Abstract
One-dimensional multi-walled carbon nanotubes (MWCNTs) are promising electrode materials for rechargeable batteries. This paper reports that graphitic MWCNT (G-MWCNT) can serve as a cathode material for a rechargeable Al-ion battery and exhibits well-defined discharging plateaus at around 2 V. AlCl4−intercalates and de-intercalates into/from the graphitic MWCNT rather than simply adsorbing on the surfaces. Hence, the Al||G-MWCNT cell exhibits good electrochemical performance with a specific capacity of 64 mA h g−1 at a current density of 200 mA g−1. The discharge capacity is almost unattenuated and maintained at about 58 mA h g−1 (Coulombic efficiency: 99.5%) after 1000 charge/discharge cycles, which indicates that the Al||G-MWCNT cell has excellent cycling stability. In addition, the low self-discharging rate (~0.4% over 72 h of rest) suggests that the intercalated AlCl4− is stable in the spaces between the graphene layers of G-MWCNT. This work reveals that Al||G-MWCNT cells exhibit diffusion-controlled faradaic process rather than capacitor behavior, which may boost the development of aluminum batteries.
Original language | English |
---|---|
Article number | 227769 |
Journal | Journal of Power Sources |
Volume | 451 |
DOIs | |
Publication status | Published - Mar 2020 |
Externally published | Yes |
Keywords
- Aluminum battery
- Battery behavior
- Chloroaluminate
- Ionic liquid
- MWCNT
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Physical and Theoretical Chemistry
- Electrical and Electronic Engineering