Abstract
Original language | English |
---|---|
Pages (from-to) | 5636-5648 |
Number of pages | 13 |
Journal | Molecular and Cellular Biology |
Volume | 30 |
Issue number | 24 |
DOIs | |
Publication status | Published - 2010 |
Keywords
- transcription factor ARNTL
- animal
- article
- Bagg albino mouse
- biological rhythm
- biology
- cell line
- chromatin immunoprecipitation
- circadian rhythm
- energy metabolism
- gene expression profiling
- gene expression regulation
- genetics
- genome
- high throughput screening
- male
- metabolism
- methodology
- microarray analysis
- mouse
- mouse mutant
- physiology
- Animals
- ARNTL Transcription Factors
- Biological Clocks
- Cell Line
- Chromatin Immunoprecipitation
- Circadian Rhythm
- Computational Biology
- Energy Metabolism
- Gene Expression Profiling
- Gene Expression Regulation
- Genome
- High-Throughput Screening Assays
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Microarray Analysis
Fingerprint
Dive into the research topics of 'Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism. / Hatanaka, F.; Matsubara, C.; Myung, J. et al.
In: Molecular and Cellular Biology, Vol. 30, No. 24, 2010, p. 5636-5648.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism
AU - Hatanaka, F.
AU - Matsubara, C.
AU - Myung, J.
AU - Yoritaka, T.
AU - Kamimura, N.
AU - Tsutsumi, S.
AU - Kanai, A.
AU - Suzuki, Y.
AU - Sassone-Corsi, P.
AU - Aburatani, H.
AU - Sugano, S.
AU - Takumi, T.
N1 - 引用次數:61 Export Date: 18 September 2018 CODEN: MCEBD 通訊地址: Takumi, T.; Laboratory of Integrative Bioscience, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami, Hiroshima 734-8553, Japan; 電子郵件: takumi@hiroshima-u.ac.jp 化學物質/CAS: ARNTL Transcription Factors 參考文獻: Akashi, M., Ichise, T., Mamine, T., Takumi, T., Molecular mechanism of cell-autonomous circadian gene expression of Period2, a crucial regulator of the mammalian circadian clock (2006) Mol. Biol. Cell, 17, pp. 555-565; Akashi, M., Takumi, T., The orphan nuclear receptor ROR regulates circadian transcription of the mammalian core-clock Bmal1 (2005) Nat. Struct. Mol. Biol., 12, pp. 441-448; Akhtar, R.A., Reddy, A.B., Maywood, E.S., Clayton, J.D., King, V.M., Smith, A.G., Gant, T.W., Kyriacou, C.P., Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus (2002) Curr. Biol., 12, pp. 540-550; Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Zhao, K., High-resolution profiling of histone methylations in the human genome (2007) Cell, 129, pp. 823-837; Bunger, M.K., Wilsbacher, L.D., Moran, S.M., Clendenin, C., Radcliffe, L.A., Hogenesch, J.B., Simon, M.C., Bradfield, C.A., Mop3 is an essential component of the master circadian pacemaker in mammals (2000) Cell, 103, pp. 1009-1017; Canaple, L., Rambaud, J., Dkhissi-Benyahya, O., Rayet, B., Tan, N.S., Michalik, L., Delaunay, F., Laudet, V., Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferatoractivated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock (2006) Mol. Endocrinol., 20, pp. 1715-1727; Chen, X., Xu, H., Yuan, P., Fang, F., Huss, M., Vega, V.B., Wong, E., Ng, H.H., Integration of external signaling pathways with the core transcriptional network in embryonic stem cells (2008) Cell, 133, pp. 1106-1117; Doi, M., Hirayama, J., Sassone-Corsi, P., Circadian regulator CLOCK is a histone acetyltransferase (2006) Cell, 125, pp. 497-508; Duffield, G.E., Best, J.D., Meurers, B.H., Bittner, A., Loros, J.J., Dunlap, J.C., Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells (2002) Curr. Biol., 12, pp. 551-557; Eckel-Mahan, K., Sassone-Corsi, P., Metabolism control by the circadian clock and vice versa (2009) Nat. Struct. Mol. Biol., 16, pp. 462-467; Gekakis, N., Staknis, D., Nguyen, H.B., Davis, F.C., Wilsbacher, L.D., King, D.P., Takahashi, J.S., Weitz, C.J., Role of the CLOCK protein in the mammalian circadian mechanism (1998) Science, 280, pp. 1564-1569; Green, C.B., Takahashi, J.S., Bass, J., The meter of metabolism (2008) Cell, 134, pp. 728-742; Hastings, M.H., Reddy, A.B., Maywood, E.S., A clockwork web: circadian timing in brain and periphery, in health and disease (2003) Nat. Rev. Neurosci., 4, pp. 649-661; Johnson, D.S., Li, W., Gordon, D.B., Bhattacharjee, A., Curry, B., Ghosh, J., Brizuela, L., Liu, X.S., Systematic evaluation of variability in ChIP-chip experiments using predefined DNA targets (2008) Genome Res., 18, pp. 393-403; Johnson, D.S., Mortazavi, A., Myers, R.M., Wold, B., Genomewide mapping of in vivo protein-DNA interactions (2007) Science, 316, pp. 1497-1502; Johnson, W.E., Li, W., Meyer, C.A., Gottardo, R., Carroll, J.S., Brown, M., Liu, X.S., Model-based analysis of tiling-arrays for ChIP-chip (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 12457-12462; Kim, T.H., Ren, B., Genome-wide analysis of protein-DNA interactions (2006) Annu. Rev. Genomics Hum. Genet., 7, pp. 81-102; Kumaki, Y., Ukai-Tadenuma, M., Uno, K.D., Nishio, J., Masumoto, K.H., Nagano, M., Komori, T., Ueda, H.R., Analysis and synthesis of high-amplitude Cis-elements in the mammalian circadian clock (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 14946-14951; Le Martelot, G., Claudel, T., Gatfield, D., Schaad, O., Kornmann, B., Sasso, G.L., Moschetta, A., Schibler, U., REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis (2009) PLoS Biol., 7, pp. e1000181; Liu, A.C., Lewis, W.G., Kay, S.A., Mammalian circadian signaling networks and therapeutic targets (2007) Nat. Chem. Biol., 3, pp. 630-639; Mitchell, P.J., Tjian, R., Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins (1989) Science, 245, pp. 371-378; Nakahata, Y., Akashi, M., Trcka, D., Yasuda, A., Takumi, T., The in vitro real-time oscillation monitoring system identifies potential entrainment factors for circadian clocks (2006) BMC Mol. Biol., 7, p. 5; Nakahata, Y., Grimaldi, B., Sahar, S., Hirayama, J., Sassone-Corsi, P., Signaling to the circadian clock: plasticity by chromatin remodeling (2007) Curr. Opin. Cell Biol., 19, pp. 230-237; Nakahata, Y., Yoshida, M., Takano, A., Soma, H., Yamamoto, T., Yasuda, A., Nakatsu, T., Takumi, T., A direct repeat of E-box-like elements is required for cell-autonomous circadian rhythm of clock genes (2008) BMC Mol. Biol., 9, p. 1; Nakatani, J., Tamada, K., Hatanaka, F., Ise, S., Ohta, H., Inoue, K., Tomonaga, S., Takumi, T., Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism (2009) Cell, 137, pp. 1235-1246; Panda, S., Antoch, M.P., Miller, B.H., Su, A.I., Schook, A.B., Straume, M., Schultz, P.G., Hogenesch, J.B., Coordinated transcription of key pathways in the mouse by the circadian clock (2002) Cell, 109, pp. 307-320; Pendergast, J.S., Nakamura, W., Friday, R.C., Hatanaka, F., Takumi, T., Yamazaki, S., Robust food anticipatory activity in BMAL1-deficient mice (2009) PLoS One, 4, pp. e4860; Porterfield, V.M., Piontkivska, H., Mintz, E.M., Identification of novel light-induced genes in the suprachiasmatic nucleus (2007) BMC Neurosci., 8, p. 98; Preitner, N., Damiola, F., Lopez-Molina, L., Zakany, J., Duboule, D., Albrecht, U., Schibler, U., The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator (2002) Cell, 110, pp. 251-260; Ptitsyn, A.A., Zvonic, S., Conrad, S.A., Scott, L.K., Mynatt, R.L., Gimble, J.M., Circadian clocks are resounding in peripheral tissues (2006) PLoS Comput. Biol., 2, pp. e16; Reppert, S.M., Weaver, D.R., Coordination of circadian timing in mammals (2002) Nature, 418, pp. 935-941; Ripperger, J.A., Schibler, U., Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions (2006) Nat. Genet., 38, pp. 369-374; Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Jones, S., Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing (2007) Nat. Methods, 4, pp. 651-657; Rudic, R.D., Mcnamara, P., Curtis, A.M., Boston, R.C., Panda, S., Hogenesch, J.B., Fitzgerald, G.A., BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis (2004) PLoS Biol., 2, pp. e377; Sahar, S., Sassone-Corsi, P., Metabolism and cancer: the circadian clock connection (2009) Nat. Rev. Cancer, 9, pp. 886-896; Sato, T.K., Panda, S., Miraglia, L.J., Reyes, T.M., Rudic, R.D., Mcnamara, P., Naik, K.A., Hogenesch, J.B., A functional genomics strategy reveals Rora as a component of the mammalian circadian clock (2004) Neuron, 43, pp. 527-537; Schibler, U., Sassone-Corsi, P., A web of circadian pacemakers (2002) Cell, 111, pp. 919-922; Storch, K.F., Lipan, O., Leykin, I., Viswanathan, N., Davis, F.C., Wong, W.H., Weitz, C.J., Extensive and divergent circadian gene expression in liver and heart (2002) Nature, 417, pp. 78-83; Storch, K.F., Paz, C., Signorovitch, J., Raviola, E., Pawlyk, B., Li, T., Weitz, C.J., Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information (2007) Cell, 130, pp. 730-741; Takahashi, J.S., Hong, H.K., Ko, C.H., Mcdearmon, E.L., The genetics of mammalian circadian order and disorder: implications for physiology and disease (2008) Nat. Rev. Genet., 9, pp. 764-775; Tamaru, T., Isojima, Y., van der Horst, G.T., Takei, K., Nagai, K., Takamatsu, K., Nucleocytoplasmic shuttling and phosphorylation of BMAL1 are regulated by circadian clock in cultured fibroblasts (2003) Genes Cells, 8, pp. 973-983; Travnickova-Bendova, Z., Cermakian, N., Reppert, S.M., Sassone-Corsi, P., Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 7728-7733; Tsuchihara, K., Suzuki, Y., Wakaguri, H., Irie, T., Tanimoto, K., Hashimoto, S., Matsushima, K., Sugano, S., Massive transcriptional start site analysis of human genes in hypoxia cells (2009) Nucleic Acids Res., 37, pp. 2249-2263; Tu, B.P., Mcknight, S.L., Metabolic cycles as an underlying basis of biological oscillations (2006) Nat. Rev. Mol. Cell. Biol., 7, pp. 696-701; Turek, F.W., Joshu, C., Kohsaka, A., Lin, E., Ivanova, G., Mcdearmon, E., Laposky, A., Bass, J., Obesity and metabolic syndrome in circadian Clock mutant mice (2005) Science, 308, pp. 1043-1045; Ueda, H.R., Chen, W., Adachi, A., Wakamatsu, H., Hayashi, S., Takasugi, T., Nagano, M., Hashimoto, S., A transcription factor response element for gene expression during circadian night (2002) Nature, 418, pp. 534-539; Ueda, H.R., Hayashi, S., Chen, W., Sano, M., Machida, M., Shigeyoshi, Y., Iino, M., Hashimoto, S., System-level identification of transcriptional circuits underlying mammalian circadian clocks (2005) Nat. Genet., 37, pp. 187-192; Watanabe, Y., Inoue, K., Okuyama-Yamamoto, A., Nakai, N., Nakatani, J., Nibu, K., Sato, N., Takumi, T., Fezf1 is required for penetration of the basal lamina by olfactory axons to promote olfactory development (2009) J. Comp. Neurol., 515, pp. 565-584; Wendt, K.S., Yoshida, K., Itoh, T., Bando, M., Koch, B., Schirghuber, E., Tsutsumi, S., Peters, J.M., Cohesin mediates transcriptional insulation by CCCTC-binding factor (2008) Nature, 451, pp. 796-801; Wijnen, H., Young, M.W., Interplay of circadian clocks and metabolic rhythms (2006) Annu. Rev. Genet., 40, pp. 409-448; Yamada, R., Ueda, H.R., Microarrays: statistical methods for circadian rhythms (2007) Methods Mol. Biol., 362, pp. 245-264; Yamamoto, T., Nakahata, Y., Soma, H., Akashi, M., Mamine, T., Takumi, T., Transcriptional oscillation of canonical clock genes in mouse peripheral tissues (2004) BMC Mol. Biol., 5, p. 18; Yang, X., Downes, M., Yu, R.T., Bookout, A.L., He, W., Straume, M., Mangelsdorf, D.J., Evans, R.M., Nuclear receptor expression links the circadian clock to metabolism (2006) Cell, 126, pp. 801-810; Yin, L., Wu, N., Curtin, J.C., Qatanani, M., Szwergold, N.R., Reid, R.A., Waitt, G.M., Lazar, M.A., Rev-erb, a heme sensor that coordinates metabolic and circadian pathways (2007) Science, 318, pp. 1786-1789; Yoo, S.H., Ko, C.H., Lowrey, P.L., Buhr, E.D., Song, E.J., Chang, S., Yoo, O.J., Takahashi, J.S., A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 2608-2613; Zhang, X., Odom, D.T., Koo, S.H., Conkright, M.D., Canettieri, G., Best, J., Chen, H., Montminy, M., Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 4459-4464
PY - 2010
Y1 - 2010
N2 - Circadian rhythms are common to most organisms and govern much of homeostasis and physiology. Since a significant fraction of the mammalian genome is controlled by the clock machinery, understanding the genome-wide signaling and epigenetic basis of circadian gene expression is essential. BMAL1 is a critical circadian transcription factor that regulates genes via E-box elements in their promoters. We used multiple high-throughput approaches, including chromatin immunoprecipitation-based systematic analyses and DNA microarrays combined with bioinformatics, to generate genome-wide profiles of BMAL1 target genes. We reveal that, in addition to E-boxes, the CCAATG element contributes to elicit robust circadian expression. BMAL1 occupancy is found in more than 150 sites, including all known clock genes. Importantly, a significant proportion of BMAL1 targets include genes that encode central regulators of metabolic processes. The database generated in this study constitutes a useful resource to decipher the network of circadian gene control and its intimate links with several fundamental physiological functions. © 2010, American Society for Microbiology.
AB - Circadian rhythms are common to most organisms and govern much of homeostasis and physiology. Since a significant fraction of the mammalian genome is controlled by the clock machinery, understanding the genome-wide signaling and epigenetic basis of circadian gene expression is essential. BMAL1 is a critical circadian transcription factor that regulates genes via E-box elements in their promoters. We used multiple high-throughput approaches, including chromatin immunoprecipitation-based systematic analyses and DNA microarrays combined with bioinformatics, to generate genome-wide profiles of BMAL1 target genes. We reveal that, in addition to E-boxes, the CCAATG element contributes to elicit robust circadian expression. BMAL1 occupancy is found in more than 150 sites, including all known clock genes. Importantly, a significant proportion of BMAL1 targets include genes that encode central regulators of metabolic processes. The database generated in this study constitutes a useful resource to decipher the network of circadian gene control and its intimate links with several fundamental physiological functions. © 2010, American Society for Microbiology.
KW - transcription factor ARNTL
KW - animal
KW - article
KW - Bagg albino mouse
KW - biological rhythm
KW - biology
KW - cell line
KW - chromatin immunoprecipitation
KW - circadian rhythm
KW - energy metabolism
KW - gene expression profiling
KW - gene expression regulation
KW - genetics
KW - genome
KW - high throughput screening
KW - male
KW - metabolism
KW - methodology
KW - microarray analysis
KW - mouse
KW - mouse mutant
KW - physiology
KW - Animals
KW - ARNTL Transcription Factors
KW - Biological Clocks
KW - Cell Line
KW - Chromatin Immunoprecipitation
KW - Circadian Rhythm
KW - Computational Biology
KW - Energy Metabolism
KW - Gene Expression Profiling
KW - Gene Expression Regulation
KW - Genome
KW - High-Throughput Screening Assays
KW - Male
KW - Mice
KW - Mice, Inbred BALB C
KW - Mice, Knockout
KW - Microarray Analysis
U2 - 10.1128/MCB.00781-10
DO - 10.1128/MCB.00781-10
M3 - Article
SN - 0270-7306
VL - 30
SP - 5636
EP - 5648
JO - Molecular and Cellular Biology
JF - Molecular and Cellular Biology
IS - 24
ER -