Evaluation of a smartphone-based assessment system in subjects with chronic ankle instability

Ya Lan Chiu, Yi Ju Tsai, Chueh-Ho Lin, You Ruei Hou, Wen Hsu Sung

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Background Ankle sprain is the most common sports-related injury, and approximately 80% of patients studied suffered recurrent sprains. These repeated ankle injuries could cause chronic ankle instability, a decrease in sports performance, and a decrease in postural control ability. At the present time, smartphones have become very popular and powerful devices, and smartphone applications (apps) that have been shown to have good validity have been designed to measure human body motion. However, the app focusing on ankle function assessment and rehabilitation is still not widely used and has very limited functions. The purpose of this study is to evaluate the feasibility of smartphone-based systems in the assessment of postural control ability for patients with chronic ankle instability. Methods Fifteen physically active adults (6 male, 9 female; aged = 23.4 ± 5.28 years; height = 167.13 ± 7.3 cm; weight = 62.06 ± 10.82 kg; BMI = 22.08 ± 2.57 kg/ m2) were recruited, and these participants had at least one leg that was evaluated as scoring lower than 27 points according to the Cumberland Ankle Instability Tool (CAIT). The smartphone used in the study was ASUS Zenfone 2, and an app developed using MIT App Inventor was used to record built-in accelerometer data during the assessment process. Subjects were asked to perform single leg stance for 20 s in eyes-open and eyes-closed conditions with each leg. The smartphone was fixed in an upright position on the middle of the shin, using an exercise armband, with the screen facing forward. The average of recorded acceleration data was used to represent the postural control performance, and higher values indicated more instability. Data were analyzed with a paired t-test with SPSS 17.0, and the statistical significance was set as alpha <0.05. Results A significant difference was found between CAIT scores from the healthier leg and injured leg (healthier leg 23.07 ± 3.80 vs. injured leg 18.27 ± 3.92, p < 0.001). Significant differences were also found between the scores for the healthier leg and injured leg during both eyes-open and eyes-closed conditions (eyes-open: healthier leg 0.051 ± 0.018 vs. injured leg 0.072 ± 0.034, p = 0.027; eyes-closed: healthier leg 0.100 ± 0.031 vs. injured leg 0.123 ± 0.038, p = 0.001, unit: m/s2). Significant differences were also found between eyes-open and eyes-closed conditions during both single leg standing with healthier leg and injured leg (healthier leg: eyes-open 0.051 ± 0.018 vs. eyes-closed 0.100 ± 0.031, p < 0.001; injured leg: eyes-open 0.072 ± 0.034 vs. eyes-closed 0.123 ± 0.038, p = 0.001, unit: m/s2). The results demonstrate that the smartphone software can be used to discriminate between the different performances of the healthier leg and injured leg, and also between eyes-open and eyes-closed conditions. Conclusion The smartphone may have the potential to be a convenient, easy-to-use, and feasible tool for the assessment of postural control ability on subjects with chronic ankle instability.

Original languageEnglish
Pages (from-to)191-195
Number of pages5
JournalComputer Methods and Programs in Biomedicine
Volume139
DOIs
Publication statusPublished - Feb 1 2017

Fingerprint

Smartphones
Ankle
Leg
Sports
Smartphone
Accelerometers
Application programs
Patient rehabilitation
Ankle Injuries
Inventors
Sprains and Strains
Athletic Performance
Athletic Injuries
Process Assessment (Health Care)

Keywords

  • Assessment
  • Chronic ankle instability
  • Smartphone

ASJC Scopus subject areas

  • Software
  • Computer Science Applications
  • Health Informatics

Cite this

Evaluation of a smartphone-based assessment system in subjects with chronic ankle instability. / Chiu, Ya Lan; Tsai, Yi Ju; Lin, Chueh-Ho; Hou, You Ruei; Sung, Wen Hsu.

In: Computer Methods and Programs in Biomedicine, Vol. 139, 01.02.2017, p. 191-195.

Research output: Contribution to journalArticle

@article{876da1b39af94f1a88489196d0e249b9,
title = "Evaluation of a smartphone-based assessment system in subjects with chronic ankle instability",
abstract = "Background Ankle sprain is the most common sports-related injury, and approximately 80{\%} of patients studied suffered recurrent sprains. These repeated ankle injuries could cause chronic ankle instability, a decrease in sports performance, and a decrease in postural control ability. At the present time, smartphones have become very popular and powerful devices, and smartphone applications (apps) that have been shown to have good validity have been designed to measure human body motion. However, the app focusing on ankle function assessment and rehabilitation is still not widely used and has very limited functions. The purpose of this study is to evaluate the feasibility of smartphone-based systems in the assessment of postural control ability for patients with chronic ankle instability. Methods Fifteen physically active adults (6 male, 9 female; aged = 23.4 ± 5.28 years; height = 167.13 ± 7.3 cm; weight = 62.06 ± 10.82 kg; BMI = 22.08 ± 2.57 kg/ m2) were recruited, and these participants had at least one leg that was evaluated as scoring lower than 27 points according to the Cumberland Ankle Instability Tool (CAIT). The smartphone used in the study was ASUS Zenfone 2, and an app developed using MIT App Inventor was used to record built-in accelerometer data during the assessment process. Subjects were asked to perform single leg stance for 20 s in eyes-open and eyes-closed conditions with each leg. The smartphone was fixed in an upright position on the middle of the shin, using an exercise armband, with the screen facing forward. The average of recorded acceleration data was used to represent the postural control performance, and higher values indicated more instability. Data were analyzed with a paired t-test with SPSS 17.0, and the statistical significance was set as alpha <0.05. Results A significant difference was found between CAIT scores from the healthier leg and injured leg (healthier leg 23.07 ± 3.80 vs. injured leg 18.27 ± 3.92, p < 0.001). Significant differences were also found between the scores for the healthier leg and injured leg during both eyes-open and eyes-closed conditions (eyes-open: healthier leg 0.051 ± 0.018 vs. injured leg 0.072 ± 0.034, p = 0.027; eyes-closed: healthier leg 0.100 ± 0.031 vs. injured leg 0.123 ± 0.038, p = 0.001, unit: m/s2). Significant differences were also found between eyes-open and eyes-closed conditions during both single leg standing with healthier leg and injured leg (healthier leg: eyes-open 0.051 ± 0.018 vs. eyes-closed 0.100 ± 0.031, p < 0.001; injured leg: eyes-open 0.072 ± 0.034 vs. eyes-closed 0.123 ± 0.038, p = 0.001, unit: m/s2). The results demonstrate that the smartphone software can be used to discriminate between the different performances of the healthier leg and injured leg, and also between eyes-open and eyes-closed conditions. Conclusion The smartphone may have the potential to be a convenient, easy-to-use, and feasible tool for the assessment of postural control ability on subjects with chronic ankle instability.",
keywords = "Assessment, Chronic ankle instability, Smartphone",
author = "Chiu, {Ya Lan} and Tsai, {Yi Ju} and Chueh-Ho Lin and Hou, {You Ruei} and Sung, {Wen Hsu}",
year = "2017",
month = "2",
day = "1",
doi = "10.1016/j.cmpb.2016.11.005",
language = "English",
volume = "139",
pages = "191--195",
journal = "Computer Methods and Programs in Biomedicine",
issn = "0169-2607",
publisher = "Elsevier Ireland Ltd",

}

TY - JOUR

T1 - Evaluation of a smartphone-based assessment system in subjects with chronic ankle instability

AU - Chiu, Ya Lan

AU - Tsai, Yi Ju

AU - Lin, Chueh-Ho

AU - Hou, You Ruei

AU - Sung, Wen Hsu

PY - 2017/2/1

Y1 - 2017/2/1

N2 - Background Ankle sprain is the most common sports-related injury, and approximately 80% of patients studied suffered recurrent sprains. These repeated ankle injuries could cause chronic ankle instability, a decrease in sports performance, and a decrease in postural control ability. At the present time, smartphones have become very popular and powerful devices, and smartphone applications (apps) that have been shown to have good validity have been designed to measure human body motion. However, the app focusing on ankle function assessment and rehabilitation is still not widely used and has very limited functions. The purpose of this study is to evaluate the feasibility of smartphone-based systems in the assessment of postural control ability for patients with chronic ankle instability. Methods Fifteen physically active adults (6 male, 9 female; aged = 23.4 ± 5.28 years; height = 167.13 ± 7.3 cm; weight = 62.06 ± 10.82 kg; BMI = 22.08 ± 2.57 kg/ m2) were recruited, and these participants had at least one leg that was evaluated as scoring lower than 27 points according to the Cumberland Ankle Instability Tool (CAIT). The smartphone used in the study was ASUS Zenfone 2, and an app developed using MIT App Inventor was used to record built-in accelerometer data during the assessment process. Subjects were asked to perform single leg stance for 20 s in eyes-open and eyes-closed conditions with each leg. The smartphone was fixed in an upright position on the middle of the shin, using an exercise armband, with the screen facing forward. The average of recorded acceleration data was used to represent the postural control performance, and higher values indicated more instability. Data were analyzed with a paired t-test with SPSS 17.0, and the statistical significance was set as alpha <0.05. Results A significant difference was found between CAIT scores from the healthier leg and injured leg (healthier leg 23.07 ± 3.80 vs. injured leg 18.27 ± 3.92, p < 0.001). Significant differences were also found between the scores for the healthier leg and injured leg during both eyes-open and eyes-closed conditions (eyes-open: healthier leg 0.051 ± 0.018 vs. injured leg 0.072 ± 0.034, p = 0.027; eyes-closed: healthier leg 0.100 ± 0.031 vs. injured leg 0.123 ± 0.038, p = 0.001, unit: m/s2). Significant differences were also found between eyes-open and eyes-closed conditions during both single leg standing with healthier leg and injured leg (healthier leg: eyes-open 0.051 ± 0.018 vs. eyes-closed 0.100 ± 0.031, p < 0.001; injured leg: eyes-open 0.072 ± 0.034 vs. eyes-closed 0.123 ± 0.038, p = 0.001, unit: m/s2). The results demonstrate that the smartphone software can be used to discriminate between the different performances of the healthier leg and injured leg, and also between eyes-open and eyes-closed conditions. Conclusion The smartphone may have the potential to be a convenient, easy-to-use, and feasible tool for the assessment of postural control ability on subjects with chronic ankle instability.

AB - Background Ankle sprain is the most common sports-related injury, and approximately 80% of patients studied suffered recurrent sprains. These repeated ankle injuries could cause chronic ankle instability, a decrease in sports performance, and a decrease in postural control ability. At the present time, smartphones have become very popular and powerful devices, and smartphone applications (apps) that have been shown to have good validity have been designed to measure human body motion. However, the app focusing on ankle function assessment and rehabilitation is still not widely used and has very limited functions. The purpose of this study is to evaluate the feasibility of smartphone-based systems in the assessment of postural control ability for patients with chronic ankle instability. Methods Fifteen physically active adults (6 male, 9 female; aged = 23.4 ± 5.28 years; height = 167.13 ± 7.3 cm; weight = 62.06 ± 10.82 kg; BMI = 22.08 ± 2.57 kg/ m2) were recruited, and these participants had at least one leg that was evaluated as scoring lower than 27 points according to the Cumberland Ankle Instability Tool (CAIT). The smartphone used in the study was ASUS Zenfone 2, and an app developed using MIT App Inventor was used to record built-in accelerometer data during the assessment process. Subjects were asked to perform single leg stance for 20 s in eyes-open and eyes-closed conditions with each leg. The smartphone was fixed in an upright position on the middle of the shin, using an exercise armband, with the screen facing forward. The average of recorded acceleration data was used to represent the postural control performance, and higher values indicated more instability. Data were analyzed with a paired t-test with SPSS 17.0, and the statistical significance was set as alpha <0.05. Results A significant difference was found between CAIT scores from the healthier leg and injured leg (healthier leg 23.07 ± 3.80 vs. injured leg 18.27 ± 3.92, p < 0.001). Significant differences were also found between the scores for the healthier leg and injured leg during both eyes-open and eyes-closed conditions (eyes-open: healthier leg 0.051 ± 0.018 vs. injured leg 0.072 ± 0.034, p = 0.027; eyes-closed: healthier leg 0.100 ± 0.031 vs. injured leg 0.123 ± 0.038, p = 0.001, unit: m/s2). Significant differences were also found between eyes-open and eyes-closed conditions during both single leg standing with healthier leg and injured leg (healthier leg: eyes-open 0.051 ± 0.018 vs. eyes-closed 0.100 ± 0.031, p < 0.001; injured leg: eyes-open 0.072 ± 0.034 vs. eyes-closed 0.123 ± 0.038, p = 0.001, unit: m/s2). The results demonstrate that the smartphone software can be used to discriminate between the different performances of the healthier leg and injured leg, and also between eyes-open and eyes-closed conditions. Conclusion The smartphone may have the potential to be a convenient, easy-to-use, and feasible tool for the assessment of postural control ability on subjects with chronic ankle instability.

KW - Assessment

KW - Chronic ankle instability

KW - Smartphone

UR - http://www.scopus.com/inward/record.url?scp=84997419099&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84997419099&partnerID=8YFLogxK

U2 - 10.1016/j.cmpb.2016.11.005

DO - 10.1016/j.cmpb.2016.11.005

M3 - Article

C2 - 28187890

AN - SCOPUS:84997419099

VL - 139

SP - 191

EP - 195

JO - Computer Methods and Programs in Biomedicine

JF - Computer Methods and Programs in Biomedicine

SN - 0169-2607

ER -