Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain, is an effector of phosphatidylinositol 3'-kinase and is involved in interleukin 6- induced neuroendocrine differentiation of prostate cancer cells

Y. Qiu, D. Robinson, T. G. Pretlow, H. J. Kung

Research output: Contribution to journalArticle

207 Citations (Scopus)

Abstract

Etk/Bmx is the newest member of Btk tyrosine kinase family that contains a pleckstrin homology domain, an src homology 3 domain, an src homology 2 domain, and a catalytic domain. Unlike other members of the Btk family kinases, which are mostly hemopoietic cell-specific, Etk/Bmx is preferentially expressed in epithelial and endothelial cells. We first identified this kinase in prostate cancer [Robinson, D., He, F, Pretlow, T. and Kung, H. J. (1996) Proc. Natl. Acad. Sci. USA 93, 5958-5962). Here we report that Etk is engaged in phosphatidylinositol 3-kinase (PI3-kinase) pathway and plays a pivotal role in interleukin 6 (IL-6) signaling in a prostate cancer cell line, LNCaP. Our evidence that PI3-kinase is involved in Etk activation includes: (i) Wortmannin, a specific inhibitor of PI3-kinase, abolished the activation of Etk by IL-6; (ii) a constitutively active p110 subunit of PI3-kinase was able to activate Etk in the absence of IL-6; and (iii) a dominant negative p85 subunit of PI3-kinase mutant blocked the activation of Etk by IL-6. Interestingly, IL-6 treatment of LNCaP induced a remarkable neuroendocrine-like differentiation phenotype, with neurite extension and enhanced expression of neuronal markers. This phenotype could be abrogated by the overexpression of a dominant-negative Etk, indicating Etk is required for this differentiation process.

Original languageEnglish
Pages (from-to)3644-3649
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume95
Issue number7
DOIs
Publication statusPublished - Mar 31 1998
Externally publishedYes

Fingerprint

Phosphatidylinositol 3-Kinase
Protein-Tyrosine Kinases
Interleukin-6
Prostatic Neoplasms
src Homology Domains
Phosphotransferases
Phenotype
Neurites
Catalytic Domain
Endothelial Cells
Epithelial Cells
Pleckstrin Homology Domains
Cell Line

Keywords

  • Cytokine
  • LNCaP
  • Phosphatidylinositides
  • Signal transduction

ASJC Scopus subject areas

  • Genetics
  • General

Cite this

@article{e7d80d74271a43c49ae77da05313e7d9,
title = "Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain, is an effector of phosphatidylinositol 3'-kinase and is involved in interleukin 6- induced neuroendocrine differentiation of prostate cancer cells",
abstract = "Etk/Bmx is the newest member of Btk tyrosine kinase family that contains a pleckstrin homology domain, an src homology 3 domain, an src homology 2 domain, and a catalytic domain. Unlike other members of the Btk family kinases, which are mostly hemopoietic cell-specific, Etk/Bmx is preferentially expressed in epithelial and endothelial cells. We first identified this kinase in prostate cancer [Robinson, D., He, F, Pretlow, T. and Kung, H. J. (1996) Proc. Natl. Acad. Sci. USA 93, 5958-5962). Here we report that Etk is engaged in phosphatidylinositol 3-kinase (PI3-kinase) pathway and plays a pivotal role in interleukin 6 (IL-6) signaling in a prostate cancer cell line, LNCaP. Our evidence that PI3-kinase is involved in Etk activation includes: (i) Wortmannin, a specific inhibitor of PI3-kinase, abolished the activation of Etk by IL-6; (ii) a constitutively active p110 subunit of PI3-kinase was able to activate Etk in the absence of IL-6; and (iii) a dominant negative p85 subunit of PI3-kinase mutant blocked the activation of Etk by IL-6. Interestingly, IL-6 treatment of LNCaP induced a remarkable neuroendocrine-like differentiation phenotype, with neurite extension and enhanced expression of neuronal markers. This phenotype could be abrogated by the overexpression of a dominant-negative Etk, indicating Etk is required for this differentiation process.",
keywords = "Cytokine, LNCaP, Phosphatidylinositides, Signal transduction",
author = "Y. Qiu and D. Robinson and Pretlow, {T. G.} and Kung, {H. J.}",
year = "1998",
month = "3",
day = "31",
doi = "10.1073/pnas.95.7.3644",
language = "English",
volume = "95",
pages = "3644--3649",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
publisher = "National Academy of Sciences",
number = "7",

}

TY - JOUR

T1 - Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain, is an effector of phosphatidylinositol 3'-kinase and is involved in interleukin 6- induced neuroendocrine differentiation of prostate cancer cells

AU - Qiu, Y.

AU - Robinson, D.

AU - Pretlow, T. G.

AU - Kung, H. J.

PY - 1998/3/31

Y1 - 1998/3/31

N2 - Etk/Bmx is the newest member of Btk tyrosine kinase family that contains a pleckstrin homology domain, an src homology 3 domain, an src homology 2 domain, and a catalytic domain. Unlike other members of the Btk family kinases, which are mostly hemopoietic cell-specific, Etk/Bmx is preferentially expressed in epithelial and endothelial cells. We first identified this kinase in prostate cancer [Robinson, D., He, F, Pretlow, T. and Kung, H. J. (1996) Proc. Natl. Acad. Sci. USA 93, 5958-5962). Here we report that Etk is engaged in phosphatidylinositol 3-kinase (PI3-kinase) pathway and plays a pivotal role in interleukin 6 (IL-6) signaling in a prostate cancer cell line, LNCaP. Our evidence that PI3-kinase is involved in Etk activation includes: (i) Wortmannin, a specific inhibitor of PI3-kinase, abolished the activation of Etk by IL-6; (ii) a constitutively active p110 subunit of PI3-kinase was able to activate Etk in the absence of IL-6; and (iii) a dominant negative p85 subunit of PI3-kinase mutant blocked the activation of Etk by IL-6. Interestingly, IL-6 treatment of LNCaP induced a remarkable neuroendocrine-like differentiation phenotype, with neurite extension and enhanced expression of neuronal markers. This phenotype could be abrogated by the overexpression of a dominant-negative Etk, indicating Etk is required for this differentiation process.

AB - Etk/Bmx is the newest member of Btk tyrosine kinase family that contains a pleckstrin homology domain, an src homology 3 domain, an src homology 2 domain, and a catalytic domain. Unlike other members of the Btk family kinases, which are mostly hemopoietic cell-specific, Etk/Bmx is preferentially expressed in epithelial and endothelial cells. We first identified this kinase in prostate cancer [Robinson, D., He, F, Pretlow, T. and Kung, H. J. (1996) Proc. Natl. Acad. Sci. USA 93, 5958-5962). Here we report that Etk is engaged in phosphatidylinositol 3-kinase (PI3-kinase) pathway and plays a pivotal role in interleukin 6 (IL-6) signaling in a prostate cancer cell line, LNCaP. Our evidence that PI3-kinase is involved in Etk activation includes: (i) Wortmannin, a specific inhibitor of PI3-kinase, abolished the activation of Etk by IL-6; (ii) a constitutively active p110 subunit of PI3-kinase was able to activate Etk in the absence of IL-6; and (iii) a dominant negative p85 subunit of PI3-kinase mutant blocked the activation of Etk by IL-6. Interestingly, IL-6 treatment of LNCaP induced a remarkable neuroendocrine-like differentiation phenotype, with neurite extension and enhanced expression of neuronal markers. This phenotype could be abrogated by the overexpression of a dominant-negative Etk, indicating Etk is required for this differentiation process.

KW - Cytokine

KW - LNCaP

KW - Phosphatidylinositides

KW - Signal transduction

UR - http://www.scopus.com/inward/record.url?scp=0032584160&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032584160&partnerID=8YFLogxK

U2 - 10.1073/pnas.95.7.3644

DO - 10.1073/pnas.95.7.3644

M3 - Article

VL - 95

SP - 3644

EP - 3649

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 7

ER -