Abstract

Immune interferon (IFN), also known as IFN-γ, promotes not only immunomodulation but also antimicrobial and anticancer activity. After IFN-γ binds to the complex of IFN-γ receptor (IFNGR) 1-IFNGR2 and subsequently activates its downstream signaling pathways, IFN-γ immediately causes transcriptional stimulation of a variety of genes that are principally involved in its biological activities. Regarding IFN-γ-dependent immunosurveillance, IFN-γ can directly suppress tumorigenesis and infection and/or can modulate the immunological status in both cancer cells and infected cells. Regarding the anticancer effects of IFN-γ, cancer cells develop strategies to escape from IFN-γ-dependent cancer immunosurveillance. Immune evasion, including the recruitment of immunosuppressive cells, secretion of immunosuppressive factors, and suppression of cytotoxic T lymphocyte responses, is speculated to be elicited by the oncogenic microenvironment. All of these events effectively downregulate IFN-γ-expressing cells and IFN-γ production. In addition to these extrinsic pathways, cancer cells may develop cellular tolerance that manifests as hyporesponsiveness to IFN-γ stimulation. This review discusses the potential escape mechanisms from IFN-γ-dependent immunosurveillance in tumorigenesis.

Original languageEnglish
Pages (from-to)1-9
Number of pages9
JournalJournal of Biomedical Science
Volume24
Issue number1
DOIs
Publication statusPublished - Feb 1 2017

Keywords

  • Cancer
  • Escape
  • Hyporesponsiveness
  • IFN-γ
  • Immunosurveillance

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Molecular Biology
  • Clinical Biochemistry
  • Cell Biology
  • Biochemistry, medical
  • Pharmacology (medical)

Fingerprint Dive into the research topics of 'Escape from IFN-γ-dependent immunosurveillance in tumorigenesis'. Together they form a unique fingerprint.

Cite this