Effect of stereocomplex formation in d-lactide-containing plla on thermal behaviors and mechanical property changes using the ageing degradation test

Tsai Chin Shih, Che Tong Lin, Sheng Yang Lee, Wei Jen Chang, Nai Chia Teng, Keng Liang Ou, How Tseng

Research output: Contribution to journalArticle


Introduction: The formation of a stereocomplex between PLLA and PDLA has been studied intensively because it increases the mechanical performance and thermal/hydrolytic resistance of polylactide-based materials; however, few studies have investigated the stereocomplex formation between PLLA and the (D-lactide)-containing PLLA copolymer. To investigate the effect of the D-lactide content of PLLA on the thermal behaviors and mechanical properties, (5D/95L) polylactide [(5D/95L)PLA], which contains a molar ratio of 5% of the D-form and 95% of the L-form of the monomer, and (15D/85L) polylactide [(15D/85L)PLA], which contains a molar ratio of 15% of the D-form and 85% of the L-form of the monomer, were used in a series of specimens. For the hydrolytic degradation test, the specimens were placed in 20-mL vials, which were filled with phosphate-buffered solution; the vials were allowed to stand at 57°C for 91 days in accordance with the ASTM F1635-95 (2000) standard test method for in vitro studies. The mechanical properties, thermal properties and crystallization behaviors were investigated using DSC and MTS, respectively. Results: The initial bending strength of the (5D/95L)PLA and (15D/85L)PLA were 35.4 and 31.1 N, respectively. After 1 week, the binding strength of the (5D/95L)PLA increased by 9.8%, and the binding strength of the (15D/85L)PLA decreased by 26%. In addition, the DSC curve of the (5D/95L)PLA demonstrated a higher melting temperature in the 1st week, and this Tc was observed in the DSC curve of the (5D/95L)PLA only during this time. The DSC curve of the (15D/85L)PLA was irregular. Discussion & Conclusions: In the (5D/95L)PLA, the recrystallization that occurred during the hydrolysis process was confirmed by the Tc and the increase in the bending strength. The stereocomplex crystallites may be formed in the (15D/85L)PLA during the degradation process. Because of the increase in the D-form monomer, the stereocomplexes were generated more easily and acted as nucleation sites. The PLLA crystal near the stereocomplex crystallites exhibited an incomplete structure, which led to a faster decrease in the bending strength. The low D-lactide content in the matrix of the PLLA did not form a stereocomplex crystallite because the surface area was not large enough to act as a nucleation site. However, the higher D-lactide-containing fraction formed a large stereocomplex crystallite. The (5D/95L)PLA demonstrated better thermal/hydrolytic resistance and mechanical stability than the (15D/85L)PLA.

Original languageEnglish
Article number1340003
JournalBiomedical Engineering - Applications, Basis and Communications
Issue number5
Publication statusPublished - Oct 2013



  • Ageing test
  • Bone plate
  • PLLA
  • Stereocomplex

ASJC Scopus subject areas

  • Biophysics
  • Biomedical Engineering
  • Bioengineering

Cite this