Abstract
Background: Chondrocytes can detect and respond to the mechanical environment by altering their metabolism. This study was designed to explore the effects of dynamic compression on chondrocyte metabolism. Methods: Chondrocytes were harvested from newborn Wistar rats. After 7 days of expansion, chondrocytes embedded in agarose discs underwent uniaxial unconfined dynamic compression loads at different amplitudes (5%, 10%, and 15%) and frequencies (0.5 Hz, 1.0 Hz, 2.0 Hz, and 3.0 Hz) with a duration of 24 hours. The delayed effects on the chondrocytes were studied at 1, 3, and 7 days after the experiment. Results: The results showed that at 10% strain, higher-frequency compression pressure can enhance the proliferation of chondrocytes. The synthesis of glycosaminoglycan (GAG) increased at 10%-15% strain and a 1-Hz load. The synthesis of nitric oxide (NO) increased at the 0.5-Hz load; while decreasing at the 15% strain. With 10% strain, 1 Hz dynamic compression, the proliferation of chondrocytes and GAG synthesis increased and persisted for 7 days, and NO synthesis decreased at the third and seventh days of culture. Conclusions: This study showed that chondrocytes respond metabolically to compressive loading, which is expected to modulate the growth and the resultant biomechanical properties of these tissue-engineered constructs during culture.
Original language | English |
---|---|
Pages (from-to) | 439-449 |
Number of pages | 11 |
Journal | International Journal of Artificial Organs |
Volume | 31 |
Issue number | 5 |
Publication status | Published - May 2008 |
Externally published | Yes |
Keywords
- Agarose
- Bioreactors
- Dynamic compression
- Nitric oxide
- Proteoglycan
ASJC Scopus subject areas
- Biophysics