Effect of different designs of interspinous process devices on the instrumented and adjacent levels after double-level lumbar decompression surgery: A finite element analysis

Hao Ju Lo, Hung Ming Chen, Yi Jie Kuo, Sai Wei Yang

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Recently, various designs and material manufactured interspinous process devices (IPDs) are on the market in managing symptomatic lumbar spinal stenosis (LSS). However, atraumatic fracture of the intervening spinous process has been reported in patients, particularly, double or multiple level lumbar decompression surgery with IPDs. This study aimed to bio-mechanically investigate the effects of few commercial IPDs, namely DIAMTM, CoflexTM, and M-PEEK, which were implanted into the L2-3, L3-4 double-level lumbar spinal processes. A validated finite element model of musculoskeletal intact lumbar spinal column was modified to accommodate the numerical analysis of different implants. The range of motion (ROM) between each vertebra, stiffness of the implanted level, intra stress on the intervertebral discs and facet joints, and the contact forces on spinous processes were compared. Among the three implants, the Coflex system showed the largest ROM restriction in extension and caused the highest stress over the disc annulus at the adjacent levels, as well as the sandwich phenomenon on the spinous process at the instrumented levels. Further, the DIAM device provided a superior loading-sharing between the two bridge supports, and the M-PEEK system offered a superior load-sharing from the superior spinous process to the lower pedicle screw. The limited motion at the instrumented segments were compensated by the upper and lower adjacent functional units, however, this increasing ROM and stress would accelerate the degeneration of un-instrumented segments.

Original languageEnglish
Article numbere0244571
JournalPLoS ONE
Volume15
Issue number12 December
DOIs
Publication statusPublished - Dec 2020

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint

Dive into the research topics of 'Effect of different designs of interspinous process devices on the instrumented and adjacent levels after double-level lumbar decompression surgery: A finite element analysis'. Together they form a unique fingerprint.

Cite this