In the fields of biomedicine and tissue engineering, natural polymer-based tissue-engineered scaffolds are used in multiple applications. As a plant-derived polymer, soy protein, containing multiple amino acids, is structurally similar to components of the extra-cellular matrix (ECM) of tissues. It is biological safety provided a good potential to be material for pure natural scaffolds. Moreover, as a protein, the properties of soy protein can be easily adjusted by modifying the functional groups on it. In addition, by blending soy protein with other synthetic and natural polymers, the mechanical characteristics and bioactive behavior of scaffolds can be facilitated for a variety of bio-applications. In this research, soy protein and polysaccharides tapioca starch are used, and gellan gum to develop a protein-based composite scaffold for cell engineering. The morphology and surface chemical composition are characterized via micro-computed tomography (micro-CT), scanning electron microscope (SEM), and fourier-transform infrared (FTIR) spectroscopy. The soy/tapioca/gellan gum (STG) composite scaffolds selectively help the adhesion and proliferation of L929 fibroblast cells while improving the migration of L929 fibroblast cells in STG composite scaffolds as the increase of soy protein proportion of the scaffold. In addition, STG composite scaffolds show great potential in the wound healing model to enhance rapid epithelialization and tissue granulation.

Original languageEnglish
Article number2200288
JournalMacromolecular Bioscience
Issue number12
Publication statusAccepted/In press - 2022


  • composite scaffold
  • gellan gum
  • skin wound healing model
  • soy protein
  • starch

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Biomaterials
  • Polymers and Plastics
  • Materials Chemistry


Dive into the research topics of 'Design and Investigation of an Eco-Friendly Wound Dressing Composed of Green Bioresources- Soy Protein, Tapioca Starch, and Gellan Gum'. Together they form a unique fingerprint.

Cite this