Depuration of copper and zinc by green oysters and blue mussels of Taiwan

Bor Cheng Han, Woei Lih Jeng, Ya Ni Tsai, Ming Shiou Jeng

Research output: Contribution to journalArticle

31 Citations (Scopus)

Abstract

This paper describes depuration processes of copper and zinc in green oysters (Crassostrea gigas) and in blue mussels (Mytilus smarangdium) collected from an environment with heavy copper contamination, and then transferred to natural clean seawater. Results show that the total loss of copper content per oyster is an exponential function of exposure time for the first 6 days with a depuration rate of 351 μg g-1 day-1 and then levels off. During this exponential decrease period approximately 67% of the copper accumulated in green oysters was depurated. However, when the copper contents in the oysters decreased from 2225 ± 111 μg g-1 to 344 ± 18.7 μg g-1 the depuration rates decreased from 245 μg g-1 day-1 to 0·08 μg g-1 day-1. This means that green oysters had a 16-fold higher copper depuration rate (351 μg g-1 day-1) than normal oysters (21·5 μg g-1 day-1) for the first 6 days. However, the depuration of accumulated copper and zinc by the mussels was a fast process in natural clean seawater. About 91% of the accumulated copper was lost during the first 6-day period; copper contents declined from 20·2 ± 3·41 μg g-1 to 1·80 ± 0·21 μg g-1. Only 36% of the accumulated zinc was lost during a depuration period of 6 days. Calculations show that the biological half-lives of copper in green and normal oysters were 11·6 and 25·1 days, respectively. The biological half-lives of zinc in green and normal oysters were 16·7 and 30·1 days, respectively. In spite of the relatively low initial copper content in blue mussels being 20·2 ± 3·41 μg g-1, the biological half-life is only 6·40 days. From these results it is important to emphasise that the fastest turnover rate is for copper in blue mussels. However, zinc is more retentive in blue mussels than copper.

Original languageEnglish
Pages (from-to)93-97
Number of pages5
JournalEnvironmental Pollution
Volume82
Issue number1
DOIs
Publication statusPublished - 1993

Fingerprint

Mytilus edulis
Ostreidae
depuration
Taiwan
Zinc
Copper
zinc
copper
half life
Seawater
Crassostrea
Mytilus
seawater
Bivalvia
Exponential functions

ASJC Scopus subject areas

  • Environmental Science(all)
  • Environmental Chemistry
  • Pollution
  • Earth and Planetary Sciences(all)

Cite this

Depuration of copper and zinc by green oysters and blue mussels of Taiwan. / Han, Bor Cheng; Jeng, Woei Lih; Tsai, Ya Ni; Jeng, Ming Shiou.

In: Environmental Pollution, Vol. 82, No. 1, 1993, p. 93-97.

Research output: Contribution to journalArticle

Han, Bor Cheng ; Jeng, Woei Lih ; Tsai, Ya Ni ; Jeng, Ming Shiou. / Depuration of copper and zinc by green oysters and blue mussels of Taiwan. In: Environmental Pollution. 1993 ; Vol. 82, No. 1. pp. 93-97.
@article{31dfb12f21f441039c5736c271214864,
title = "Depuration of copper and zinc by green oysters and blue mussels of Taiwan",
abstract = "This paper describes depuration processes of copper and zinc in green oysters (Crassostrea gigas) and in blue mussels (Mytilus smarangdium) collected from an environment with heavy copper contamination, and then transferred to natural clean seawater. Results show that the total loss of copper content per oyster is an exponential function of exposure time for the first 6 days with a depuration rate of 351 μg g-1 day-1 and then levels off. During this exponential decrease period approximately 67{\%} of the copper accumulated in green oysters was depurated. However, when the copper contents in the oysters decreased from 2225 ± 111 μg g-1 to 344 ± 18.7 μg g-1 the depuration rates decreased from 245 μg g-1 day-1 to 0·08 μg g-1 day-1. This means that green oysters had a 16-fold higher copper depuration rate (351 μg g-1 day-1) than normal oysters (21·5 μg g-1 day-1) for the first 6 days. However, the depuration of accumulated copper and zinc by the mussels was a fast process in natural clean seawater. About 91{\%} of the accumulated copper was lost during the first 6-day period; copper contents declined from 20·2 ± 3·41 μg g-1 to 1·80 ± 0·21 μg g-1. Only 36{\%} of the accumulated zinc was lost during a depuration period of 6 days. Calculations show that the biological half-lives of copper in green and normal oysters were 11·6 and 25·1 days, respectively. The biological half-lives of zinc in green and normal oysters were 16·7 and 30·1 days, respectively. In spite of the relatively low initial copper content in blue mussels being 20·2 ± 3·41 μg g-1, the biological half-life is only 6·40 days. From these results it is important to emphasise that the fastest turnover rate is for copper in blue mussels. However, zinc is more retentive in blue mussels than copper.",
author = "Han, {Bor Cheng} and Jeng, {Woei Lih} and Tsai, {Ya Ni} and Jeng, {Ming Shiou}",
year = "1993",
doi = "10.1016/0269-7491(93)90166-L",
language = "English",
volume = "82",
pages = "93--97",
journal = "Environmental Pollution",
issn = "0269-7491",
publisher = "Elsevier Limited",
number = "1",

}

TY - JOUR

T1 - Depuration of copper and zinc by green oysters and blue mussels of Taiwan

AU - Han, Bor Cheng

AU - Jeng, Woei Lih

AU - Tsai, Ya Ni

AU - Jeng, Ming Shiou

PY - 1993

Y1 - 1993

N2 - This paper describes depuration processes of copper and zinc in green oysters (Crassostrea gigas) and in blue mussels (Mytilus smarangdium) collected from an environment with heavy copper contamination, and then transferred to natural clean seawater. Results show that the total loss of copper content per oyster is an exponential function of exposure time for the first 6 days with a depuration rate of 351 μg g-1 day-1 and then levels off. During this exponential decrease period approximately 67% of the copper accumulated in green oysters was depurated. However, when the copper contents in the oysters decreased from 2225 ± 111 μg g-1 to 344 ± 18.7 μg g-1 the depuration rates decreased from 245 μg g-1 day-1 to 0·08 μg g-1 day-1. This means that green oysters had a 16-fold higher copper depuration rate (351 μg g-1 day-1) than normal oysters (21·5 μg g-1 day-1) for the first 6 days. However, the depuration of accumulated copper and zinc by the mussels was a fast process in natural clean seawater. About 91% of the accumulated copper was lost during the first 6-day period; copper contents declined from 20·2 ± 3·41 μg g-1 to 1·80 ± 0·21 μg g-1. Only 36% of the accumulated zinc was lost during a depuration period of 6 days. Calculations show that the biological half-lives of copper in green and normal oysters were 11·6 and 25·1 days, respectively. The biological half-lives of zinc in green and normal oysters were 16·7 and 30·1 days, respectively. In spite of the relatively low initial copper content in blue mussels being 20·2 ± 3·41 μg g-1, the biological half-life is only 6·40 days. From these results it is important to emphasise that the fastest turnover rate is for copper in blue mussels. However, zinc is more retentive in blue mussels than copper.

AB - This paper describes depuration processes of copper and zinc in green oysters (Crassostrea gigas) and in blue mussels (Mytilus smarangdium) collected from an environment with heavy copper contamination, and then transferred to natural clean seawater. Results show that the total loss of copper content per oyster is an exponential function of exposure time for the first 6 days with a depuration rate of 351 μg g-1 day-1 and then levels off. During this exponential decrease period approximately 67% of the copper accumulated in green oysters was depurated. However, when the copper contents in the oysters decreased from 2225 ± 111 μg g-1 to 344 ± 18.7 μg g-1 the depuration rates decreased from 245 μg g-1 day-1 to 0·08 μg g-1 day-1. This means that green oysters had a 16-fold higher copper depuration rate (351 μg g-1 day-1) than normal oysters (21·5 μg g-1 day-1) for the first 6 days. However, the depuration of accumulated copper and zinc by the mussels was a fast process in natural clean seawater. About 91% of the accumulated copper was lost during the first 6-day period; copper contents declined from 20·2 ± 3·41 μg g-1 to 1·80 ± 0·21 μg g-1. Only 36% of the accumulated zinc was lost during a depuration period of 6 days. Calculations show that the biological half-lives of copper in green and normal oysters were 11·6 and 25·1 days, respectively. The biological half-lives of zinc in green and normal oysters were 16·7 and 30·1 days, respectively. In spite of the relatively low initial copper content in blue mussels being 20·2 ± 3·41 μg g-1, the biological half-life is only 6·40 days. From these results it is important to emphasise that the fastest turnover rate is for copper in blue mussels. However, zinc is more retentive in blue mussels than copper.

UR - http://www.scopus.com/inward/record.url?scp=0027198504&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027198504&partnerID=8YFLogxK

U2 - 10.1016/0269-7491(93)90166-L

DO - 10.1016/0269-7491(93)90166-L

M3 - Article

VL - 82

SP - 93

EP - 97

JO - Environmental Pollution

JF - Environmental Pollution

SN - 0269-7491

IS - 1

ER -