Cystometric measurements in rats with an experimentally induced traumatic brain injury and voiding dysfunction: A time-course study

Chellappan Praveen Rajneesh, Ling Yu Yang, Shih Ching Chen, Tsung Hsun Hsieh, Hung Yen Chin, Chih Wei Peng

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Traumatic brain injuries (TBIs) are a serious public health issue worldwide with increased mortality as well as severe disabilities and injuries caused by falls and road accidents. Unfortunately, there is no approved therapy for TBIs, and bladder dysfunction is a striking symptom. Accordingly, we attempted to analyze bladder dysfunction and voiding efficiency in rats with a TBI at different time-course intervals. Time-dependent analyses were scheduled from the next day until four weeks after a TBI. Experimental animals were grouped and analyzed under the above conditions. Cystometric measurements were used for this analysis and were further elaborated as external urethral sphincter electromyographic (EUS-EMG) activity and cystometrogram (CMG) measurements. Moreover, magnetic resonance imaging (MRI) studies were conducted to investigate secondary injury progression in TBI rats, and results were compared to normal control (NC) rats. Results of EUS-EMG revealed that the burst period, active period, and silent period in TBI rats were drastically reduced compared to NC rats, but they increased later and reached a stagnant phase. Likewise, in CMG measurements, bladder function, the voided volume, and voiding efficiency decreased immediately after the TBI, and other parameters like the volume threshold, inter-contraction interval, and residual volume drastically increased. Later, those levels changed, and all observed results were compared to NC rats. MRI results revealed the prevalence of cerebral edema and the progression of secondary injury. All of the above-stated results of the experiments were extensively substantiated. Thus, these innovative findings of our study model will surely pave the way for new therapeutic interventions for TBI treatment and prominently highlight their applications in the field of neuroscience in the future.

Original languageEnglish
Article number325
JournalBrain Sciences
Volume9
Issue number11
DOIs
Publication statusPublished - Nov 14 2019

Keywords

  • Cystometric measurements
  • External urethral sphincter electromyographic activity
  • Time-course analysis
  • Traumatic brain injury

ASJC Scopus subject areas

  • Neuroscience(all)

Fingerprint Dive into the research topics of 'Cystometric measurements in rats with an experimentally induced traumatic brain injury and voiding dysfunction: A time-course study'. Together they form a unique fingerprint.

Cite this