Correlation of the penetration enhancement with the influence of an alcohol/tocopheryl polyethylene glycol succinate (TPGS) cosolvent system on the molecular structure of the stratum corneum of nude mouse skin as examined by microscopic FTIR/DSC

Yi Bo Liou, Hsiu O. Ho, Shin Yi Chen, Ming Thau Sheu

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Tocopheryl polyethylene glycol succinate (TPGS) is a water-soluble derivative of natural source of vitamin E, which possesses a dual nature of lipophilicity and hydrophilicity, similar to a surface-active agent. The penetration enhancement of estradiol by an ethanol and TPGS cosolvent system (EtOH/TPGS) has been confirmed. In this study, the correlation of the penetration enhancement with the influence of the EtOH/TPGS cosolvent system on biophysical changes of the stratum corneum (SC) as examined by Fourier transformation infrared spectrometry differential scanning calorimetry (FTIR/DSC) was investigated. Thermotropic changes in the asymmetrical and symmetrical C-H stretching of hydrocarbon chains of lipids, and amide I and II bands that characterize the protein structure of the SC treated with different concentrations of the EtOH/TPGS cosolvent were examined in this investigation. Results demonstrated that a strong correlation of the influence on biophysical changes of the SC treated with the EtOH/TPGS cosolvent system with the penetration enhancement of estradiol by the corresponding cosolvent system was not evident. It was concluded that the incorporation of TPGS in the cosolvent system seemed only to have insignificantly modified the structural features of the SC. It was not obvious that the penetrant had encountered these modifications resulting in an improvement in the penetration of estradiol by TPGS.

Original languageEnglish
Pages (from-to)695-703
Number of pages9
JournalSpectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
Volume74
Issue number3
DOIs
Publication statusPublished - Oct 15 2009

Fingerprint

cornea
Fourier transformation
Succinic Acid
strata
Spectrometry
Molecular structure
Polyethylene glycols
mice
glycols
polyethylenes
Differential scanning calorimetry
Skin
alcohols
Alcohols
molecular structure
heat measurement
penetration
Infrared radiation
scanning
augmentation

Keywords

  • Estradiol
  • EtOH/TPGS cosolvent system
  • FTIR-DSC
  • Stratum corneum
  • TPGS

ASJC Scopus subject areas

  • Instrumentation
  • Atomic and Molecular Physics, and Optics
  • Analytical Chemistry
  • Spectroscopy

Cite this

@article{7f9a364ed50e4db3801dfd82316bc3d7,
title = "Correlation of the penetration enhancement with the influence of an alcohol/tocopheryl polyethylene glycol succinate (TPGS) cosolvent system on the molecular structure of the stratum corneum of nude mouse skin as examined by microscopic FTIR/DSC",
abstract = "Tocopheryl polyethylene glycol succinate (TPGS) is a water-soluble derivative of natural source of vitamin E, which possesses a dual nature of lipophilicity and hydrophilicity, similar to a surface-active agent. The penetration enhancement of estradiol by an ethanol and TPGS cosolvent system (EtOH/TPGS) has been confirmed. In this study, the correlation of the penetration enhancement with the influence of the EtOH/TPGS cosolvent system on biophysical changes of the stratum corneum (SC) as examined by Fourier transformation infrared spectrometry differential scanning calorimetry (FTIR/DSC) was investigated. Thermotropic changes in the asymmetrical and symmetrical C-H stretching of hydrocarbon chains of lipids, and amide I and II bands that characterize the protein structure of the SC treated with different concentrations of the EtOH/TPGS cosolvent were examined in this investigation. Results demonstrated that a strong correlation of the influence on biophysical changes of the SC treated with the EtOH/TPGS cosolvent system with the penetration enhancement of estradiol by the corresponding cosolvent system was not evident. It was concluded that the incorporation of TPGS in the cosolvent system seemed only to have insignificantly modified the structural features of the SC. It was not obvious that the penetrant had encountered these modifications resulting in an improvement in the penetration of estradiol by TPGS.",
keywords = "Estradiol, EtOH/TPGS cosolvent system, FTIR-DSC, Stratum corneum, TPGS",
author = "Liou, {Yi Bo} and Ho, {Hsiu O.} and Chen, {Shin Yi} and Sheu, {Ming Thau}",
year = "2009",
month = "10",
day = "15",
doi = "10.1016/j.saa.2009.08.001",
language = "English",
volume = "74",
pages = "695--703",
journal = "Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy",
issn = "1386-1425",
publisher = "Elsevier",
number = "3",

}

TY - JOUR

T1 - Correlation of the penetration enhancement with the influence of an alcohol/tocopheryl polyethylene glycol succinate (TPGS) cosolvent system on the molecular structure of the stratum corneum of nude mouse skin as examined by microscopic FTIR/DSC

AU - Liou, Yi Bo

AU - Ho, Hsiu O.

AU - Chen, Shin Yi

AU - Sheu, Ming Thau

PY - 2009/10/15

Y1 - 2009/10/15

N2 - Tocopheryl polyethylene glycol succinate (TPGS) is a water-soluble derivative of natural source of vitamin E, which possesses a dual nature of lipophilicity and hydrophilicity, similar to a surface-active agent. The penetration enhancement of estradiol by an ethanol and TPGS cosolvent system (EtOH/TPGS) has been confirmed. In this study, the correlation of the penetration enhancement with the influence of the EtOH/TPGS cosolvent system on biophysical changes of the stratum corneum (SC) as examined by Fourier transformation infrared spectrometry differential scanning calorimetry (FTIR/DSC) was investigated. Thermotropic changes in the asymmetrical and symmetrical C-H stretching of hydrocarbon chains of lipids, and amide I and II bands that characterize the protein structure of the SC treated with different concentrations of the EtOH/TPGS cosolvent were examined in this investigation. Results demonstrated that a strong correlation of the influence on biophysical changes of the SC treated with the EtOH/TPGS cosolvent system with the penetration enhancement of estradiol by the corresponding cosolvent system was not evident. It was concluded that the incorporation of TPGS in the cosolvent system seemed only to have insignificantly modified the structural features of the SC. It was not obvious that the penetrant had encountered these modifications resulting in an improvement in the penetration of estradiol by TPGS.

AB - Tocopheryl polyethylene glycol succinate (TPGS) is a water-soluble derivative of natural source of vitamin E, which possesses a dual nature of lipophilicity and hydrophilicity, similar to a surface-active agent. The penetration enhancement of estradiol by an ethanol and TPGS cosolvent system (EtOH/TPGS) has been confirmed. In this study, the correlation of the penetration enhancement with the influence of the EtOH/TPGS cosolvent system on biophysical changes of the stratum corneum (SC) as examined by Fourier transformation infrared spectrometry differential scanning calorimetry (FTIR/DSC) was investigated. Thermotropic changes in the asymmetrical and symmetrical C-H stretching of hydrocarbon chains of lipids, and amide I and II bands that characterize the protein structure of the SC treated with different concentrations of the EtOH/TPGS cosolvent were examined in this investigation. Results demonstrated that a strong correlation of the influence on biophysical changes of the SC treated with the EtOH/TPGS cosolvent system with the penetration enhancement of estradiol by the corresponding cosolvent system was not evident. It was concluded that the incorporation of TPGS in the cosolvent system seemed only to have insignificantly modified the structural features of the SC. It was not obvious that the penetrant had encountered these modifications resulting in an improvement in the penetration of estradiol by TPGS.

KW - Estradiol

KW - EtOH/TPGS cosolvent system

KW - FTIR-DSC

KW - Stratum corneum

KW - TPGS

UR - http://www.scopus.com/inward/record.url?scp=70249115066&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=70249115066&partnerID=8YFLogxK

U2 - 10.1016/j.saa.2009.08.001

DO - 10.1016/j.saa.2009.08.001

M3 - Article

C2 - 19716337

AN - SCOPUS:70249115066

VL - 74

SP - 695

EP - 703

JO - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy

JF - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy

SN - 1386-1425

IS - 3

ER -