Abstract
Purpose: Triple-negative breast cancer (TNBC), an aggressive subtype, is frequently misclassified as fibroadenoma due to benign morphologic features on breast ultrasound (US). This study aims to develop a computer-aided diagnosis (CAD) system based on texture features for distinguishing between TNBC and benign fibroadenomas in US images. Methods: US images of 169 pathology-proven tumors (mean size, 1.65 cm; range, 0.7-3.0 cm) composed of 84 benign fibroadenomas and 85 TNBC tumors are used in this study. After a tumor is segmented out using the level-set method, morphological, conventional texture, and multiresolution gray-scale invariant texture feature sets are computed using a best-fitting ellipse, gray-level co-occurrence matrices, and the ranklet transform, respectively. The linear support vector machine with leave-one-out cross-validation schema is used as a classifier, and the diagnostic performance is assessed with receiver operating characteristic curve analysis. Results: The Az values of the morphology, conventional texture, and multiresolution gray-scale invariant texture feature sets are 0.8470 [95% confidence intervals (CIs), 0.7826-0.8973], 0.8542 (95% CI, 0.7911-0.9030), and 0.9695 (95% CI, 0.9376-0.9865), respectively. The Az of the CAD system based on the combined feature sets is 0.9702 (95% CI, 0.9334-0.9882). Conclusions: The CAD system based on texture features extracted via the ranklet transform may be useful for improving the ability to discriminate between TNBC and benign fibroadenomas.
Original language | English |
---|---|
Pages (from-to) | 3024-3035 |
Number of pages | 12 |
Journal | Medical Physics |
Volume | 42 |
Issue number | 6 |
DOIs | |
Publication status | Published - Jun 1 2015 |
Externally published | Yes |
Keywords
- breast cancer
- fibroadenoma
- gray-scale invariant features
- ranklet transform
- triple-negative breast cancer
ASJC Scopus subject areas
- Biophysics
- Radiology Nuclear Medicine and imaging