Compatible parameters for semantic measurement in extended fuzzy relational databases

Julie Yu Chih Liu, Tsu Hao Chang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Database integration is much more complex in the context of fuzzy databases than in classical databases due to the measurement of the closeness of attribute values. In extended possibility-based fuzzy relational databases, the measurement comprises parameters in addition to attribute values. As the parameters used in databases are different, the closeness of the same pairs of attribute values will not be the same. It leads into the problem in defining the data redundancy consistently after data integration. However, the requirement of employing identical parameters in different databases is too stern to follow. This paper studies the closeness of attribute values varying from parameters of the measurement, and provides a flexible guide to define the parameters in fuzzy databases to be integrated.

Original languageEnglish
Title of host publicationProceedings of the International Conference on Artificial Intelligence IC-AI 2003
EditorsH.R. Arabnia, R. Joshua, Y. Mun, H.R. Arabnia, R. Joshua, Y. Mun
Pages988-993
Number of pages6
Volume2
Publication statusPublished - 2003
Externally publishedYes
EventProceedings of the International Conference on Artificial Intelligence, IC-AI 2003 - Las Vegas, NV, United States
Duration: Jun 23 2003Jun 26 2003

Other

OtherProceedings of the International Conference on Artificial Intelligence, IC-AI 2003
CountryUnited States
CityLas Vegas, NV
Period6/23/036/26/03

Fingerprint

Semantics
Data integration
Redundancy

Keywords

  • Data integration
  • Fuzzy databases
  • Proximity relations

ASJC Scopus subject areas

  • Artificial Intelligence

Cite this

Liu, J. Y. C., & Chang, T. H. (2003). Compatible parameters for semantic measurement in extended fuzzy relational databases. In H. R. Arabnia, R. Joshua, Y. Mun, H. R. Arabnia, R. Joshua, & Y. Mun (Eds.), Proceedings of the International Conference on Artificial Intelligence IC-AI 2003 (Vol. 2, pp. 988-993)

Compatible parameters for semantic measurement in extended fuzzy relational databases. / Liu, Julie Yu Chih; Chang, Tsu Hao.

Proceedings of the International Conference on Artificial Intelligence IC-AI 2003. ed. / H.R. Arabnia; R. Joshua; Y. Mun; H.R. Arabnia; R. Joshua; Y. Mun. Vol. 2 2003. p. 988-993.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Liu, JYC & Chang, TH 2003, Compatible parameters for semantic measurement in extended fuzzy relational databases. in HR Arabnia, R Joshua, Y Mun, HR Arabnia, R Joshua & Y Mun (eds), Proceedings of the International Conference on Artificial Intelligence IC-AI 2003. vol. 2, pp. 988-993, Proceedings of the International Conference on Artificial Intelligence, IC-AI 2003, Las Vegas, NV, United States, 6/23/03.
Liu JYC, Chang TH. Compatible parameters for semantic measurement in extended fuzzy relational databases. In Arabnia HR, Joshua R, Mun Y, Arabnia HR, Joshua R, Mun Y, editors, Proceedings of the International Conference on Artificial Intelligence IC-AI 2003. Vol. 2. 2003. p. 988-993
Liu, Julie Yu Chih ; Chang, Tsu Hao. / Compatible parameters for semantic measurement in extended fuzzy relational databases. Proceedings of the International Conference on Artificial Intelligence IC-AI 2003. editor / H.R. Arabnia ; R. Joshua ; Y. Mun ; H.R. Arabnia ; R. Joshua ; Y. Mun. Vol. 2 2003. pp. 988-993
@inproceedings{c6020b11866f441695c6d739fc563b77,
title = "Compatible parameters for semantic measurement in extended fuzzy relational databases",
abstract = "Database integration is much more complex in the context of fuzzy databases than in classical databases due to the measurement of the closeness of attribute values. In extended possibility-based fuzzy relational databases, the measurement comprises parameters in addition to attribute values. As the parameters used in databases are different, the closeness of the same pairs of attribute values will not be the same. It leads into the problem in defining the data redundancy consistently after data integration. However, the requirement of employing identical parameters in different databases is too stern to follow. This paper studies the closeness of attribute values varying from parameters of the measurement, and provides a flexible guide to define the parameters in fuzzy databases to be integrated.",
keywords = "Data integration, Fuzzy databases, Proximity relations",
author = "Liu, {Julie Yu Chih} and Chang, {Tsu Hao}",
year = "2003",
language = "English",
isbn = "1932415122",
volume = "2",
pages = "988--993",
editor = "H.R. Arabnia and R. Joshua and Y. Mun and H.R. Arabnia and R. Joshua and Y. Mun",
booktitle = "Proceedings of the International Conference on Artificial Intelligence IC-AI 2003",

}

TY - GEN

T1 - Compatible parameters for semantic measurement in extended fuzzy relational databases

AU - Liu, Julie Yu Chih

AU - Chang, Tsu Hao

PY - 2003

Y1 - 2003

N2 - Database integration is much more complex in the context of fuzzy databases than in classical databases due to the measurement of the closeness of attribute values. In extended possibility-based fuzzy relational databases, the measurement comprises parameters in addition to attribute values. As the parameters used in databases are different, the closeness of the same pairs of attribute values will not be the same. It leads into the problem in defining the data redundancy consistently after data integration. However, the requirement of employing identical parameters in different databases is too stern to follow. This paper studies the closeness of attribute values varying from parameters of the measurement, and provides a flexible guide to define the parameters in fuzzy databases to be integrated.

AB - Database integration is much more complex in the context of fuzzy databases than in classical databases due to the measurement of the closeness of attribute values. In extended possibility-based fuzzy relational databases, the measurement comprises parameters in addition to attribute values. As the parameters used in databases are different, the closeness of the same pairs of attribute values will not be the same. It leads into the problem in defining the data redundancy consistently after data integration. However, the requirement of employing identical parameters in different databases is too stern to follow. This paper studies the closeness of attribute values varying from parameters of the measurement, and provides a flexible guide to define the parameters in fuzzy databases to be integrated.

KW - Data integration

KW - Fuzzy databases

KW - Proximity relations

UR - http://www.scopus.com/inward/record.url?scp=1642368757&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=1642368757&partnerID=8YFLogxK

M3 - Conference contribution

SN - 1932415122

VL - 2

SP - 988

EP - 993

BT - Proceedings of the International Conference on Artificial Intelligence IC-AI 2003

A2 - Arabnia, H.R.

A2 - Joshua, R.

A2 - Mun, Y.

A2 - Arabnia, H.R.

A2 - Joshua, R.

A2 - Mun, Y.

ER -