Cell-autonomous heparanase modulates self-renewal and migration in bone marrow-derived mesenchymal stem cells

Chun Chun Cheng, Yen Hua Lee, Shau Ping Lin, Wei Chun Huangfu, I. Hsuan Liu

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Background: Stem cell-fate is highly regulated by stem cell niche, which is composed of a distinct microenvironment, including neighboring cells, signals and extracellular matrix. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells and are potentially applicable in wide variety of pathological conditions. However, the niche microenvironment for BM-MSCs maintenance has not been clearly characterized. Accumulating evidence indicated that heparan sulfate glycosaminoglycans (HS-GAGs) modulate the self-renewal and differentiation of BM-MSCs, while overexpression of heparanase (HPSE1) resulted in the change of histological profile of bone marrow. Here, we inhibited the enzymatic activity of cell-autonomous HPSE1 in BM-MSCs to clarify the physiological role of HPSE1 in BM-MSCs. Results: Isolated mouse BM-MSCs express HPSE1 as indicated by the existence of its mRNA and protein, which includes latent form and enzymatically active HPSE1. During in vitro osteo- differentiations, although the expression levels of Hpse1 fluctuated, enzymatic inhibition did not affect osteogenic differentiation, which might due to increased expression level of matrix metalloproteinase 9 (Mmp9). However, cell proliferation and colony formation efficiency were decreased when HPSE1 was enzymatically inhibited. HPSE1 inhibition potentiated SDF-1/CXCR4 signaling axis and in turn augmented the migratory/anchoring behavior of BM-MSCs. We further demonstrated that inhibition of HPSE1 decreased the accumulation of acetylation marks on histone H4 lysine residues suggesting that HPSE1 also modulates the chromatin remodeling. Conclusions: Our findings indicated cell-autonomous HPSE1 modulates clonogenicity, proliferative potential and migration of BM-MSCs and suggested the HS-GAGs may contribute to the niche microenvironment of BM-MSCs.

Original languageEnglish
Article number21
JournalJournal of Biomedical Science
Volume21
Issue number1
DOIs
Publication statusPublished - Mar 13 2014

Keywords

  • Bone marrow-derived mesenchymal stem cells
  • Glycosaminoglycans
  • Heparan sulfate proteoglycans
  • Heparanase

ASJC Scopus subject areas

  • Clinical Biochemistry
  • Molecular Biology
  • Cell Biology
  • Biochemistry, medical
  • Endocrinology, Diabetes and Metabolism
  • Pharmacology (medical)

Fingerprint Dive into the research topics of 'Cell-autonomous heparanase modulates self-renewal and migration in bone marrow-derived mesenchymal stem cells'. Together they form a unique fingerprint.

  • Cite this