Abstract

Mg-based alloys have great potential for development into fixation implants because of their highly biocompatible and biodegradable metallic properties. In this study, we sought to determine the biocompatibility of Mg 60 Zn 35 Ca 5 bulk metallic glass composite (BMGC) with fabricated implants in a rabbit tendon-bone interference fixation model. We investigated the cellular cytotoxicity of Mg 60 Zn 35 Ca 5 BMGC toward rabbit osteoblasts and compared it with conventional titanium alloy (Ti6Al4V) and polylactic acid (PLA). The results show that Mg 60 Zn 35 Ca 5 BMGC may be classed as slightly toxic on the basis of the standard ISO 10993-5. We further characterized the osteogenic effect of the Mg 60 Zn 35 Ca 5 BMGC extraction medium on rabbit osteoblasts by quantifying extracellular calcium and mineral deposition, as well as cellular alkaline phosphatase activity. The results of these tests were found to be promising. The chemotactic effect of the Mg 60 Zn 35 Ca 5 BMGC extraction medium on rabbit osteoblasts was demonstrated through a transwell migration assay. For the in vivo section of this study, a rabbit tendon-bone interference fixation model was established to determine the biocompatibility and osteogenic potential of Mg 60 Zn 35 Ca 5 BMGC in a created bony tunnel for a period of up to 24 weeks. The results show that Mg 60 Zn 35 Ca 5 BMGC induced considerable new bone formation at the implant site in comparison with conventional titanium alloy after 24 weeks of implantation. In conclusion, this study revealed that Mg 60 Zn 35 Ca 5 BMGC demonstrated adequate biocompatibility and exhibited significant osteogenic potential both in vitro and in vivo. These advantages may be clinically beneficial to the development of Mg 60 Zn 35 Ca 5 BMGC implants for future applications.

Original languageEnglish
Article number2191
JournalInternational Journal of Molecular Sciences
Volume20
Issue number9
DOIs
Publication statusPublished - May 3 2019

    Fingerprint

Keywords

  • Biocompatible
  • Biodegradable
  • MgZnCa bulk metallic glass
  • Osteogenic

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Cite this