Beyond noise to function: reframing the global brain activity and its dynamic topography

Jianfeng Zhang, Georg Northoff

Research output: Contribution to journalArticlepeer-review

Abstract

How global and local activity interact with each other is a common question in complex systems like climate and economy. Analogously, the brain too displays ‘global’ activity that interacts with local-regional activity and modulates behavior. The brain’s global activity, investigated as global signal in fMRI, so far, has mainly been conceived as non-neuronal noise. We here review the findings from healthy and clinical populations to demonstrate the neural basis and functions of global signal to brain and behavior. We show that global signal (i) is closely coupled with physiological signals and modulates the arousal level; and (ii) organizes an elaborated dynamic topography and coordinates the different forms of cognition. We also postulate a Dual-Layer Model including both background and surface layers. Together, the latest evidence strongly suggests the need to go beyond the view of global signal as noise by embracing a dual-layer model with background and surface layer.

Original languageEnglish
Article number1350
JournalCommunications Biology
Volume5
Issue number1
DOIs
Publication statusPublished - Dec 2022

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Fingerprint

Dive into the research topics of 'Beyond noise to function: reframing the global brain activity and its dynamic topography'. Together they form a unique fingerprint.

Cite this