Arsenic trioxide enhances the radiation sensitivity of androgen-dependent and -independent human prostate cancer cells

Hui Wen Chiu, Yi An Chen, Sheng Yow Ho, Ying Jan Wang

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

Prostate cancer is the most common malignancy in men. In the present study, LNCaP (androgen-sensitive human prostate cancer cells) and PC-3 cells (androgen-independent human prostate cancer cells) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with arsenic trioxide (ATO) and to determine the underlying mechanisms in vitro and in vivo. We found that IR combined with ATO increases the therapeutic efficacy compared to individual treatments in LNCaP and PC-3 human prostate cancer cells. In addition, combined treatment showed enhanced reactive oxygen species (ROS) generation compared to treatment with ATO or IR alone in PC-3 cells. Combined treatment induced autophagy and apoptosis in LNCaP cells, and mainly induced autophagy in PC-3 cells. The cell death that was induced by the combined treatment was primarily the result of inhibition of the Akt/mTOR signaling pathways. Furthermore, we found that the combined treatment of cells pre-treated with 3-MA resulted in a significant change in AO-positive cells and cytotoxicity. In an in vivo study, the combination treatment had anti-tumor growth effects. These novel findings suggest that combined treatment is a potential therapeutic strategy not only for androgen-dependent prostate cancer but also for androgen-independent prostate cancer.

Original languageEnglish
Article numbere31579
JournalPLoS One
Volume7
Issue number2
DOIs
Publication statusPublished - Feb 20 2012
Externally publishedYes

Fingerprint

Radiation Tolerance
prostatic neoplasms
androgens
arsenic
Androgens
Prostatic Neoplasms
Cells
Ionizing radiation
Radiation
ionizing radiation
autophagy
cells
Ionizing Radiation
Therapeutics
Autophagy
Cell death
Cytotoxicity
therapeutics
Tumors
in vivo studies

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Arsenic trioxide enhances the radiation sensitivity of androgen-dependent and -independent human prostate cancer cells. / Chiu, Hui Wen; Chen, Yi An; Ho, Sheng Yow; Wang, Ying Jan.

In: PLoS One, Vol. 7, No. 2, e31579, 20.02.2012.

Research output: Contribution to journalArticle

@article{57fdf7cb9dfb4d25901306c448f8bbd8,
title = "Arsenic trioxide enhances the radiation sensitivity of androgen-dependent and -independent human prostate cancer cells",
abstract = "Prostate cancer is the most common malignancy in men. In the present study, LNCaP (androgen-sensitive human prostate cancer cells) and PC-3 cells (androgen-independent human prostate cancer cells) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with arsenic trioxide (ATO) and to determine the underlying mechanisms in vitro and in vivo. We found that IR combined with ATO increases the therapeutic efficacy compared to individual treatments in LNCaP and PC-3 human prostate cancer cells. In addition, combined treatment showed enhanced reactive oxygen species (ROS) generation compared to treatment with ATO or IR alone in PC-3 cells. Combined treatment induced autophagy and apoptosis in LNCaP cells, and mainly induced autophagy in PC-3 cells. The cell death that was induced by the combined treatment was primarily the result of inhibition of the Akt/mTOR signaling pathways. Furthermore, we found that the combined treatment of cells pre-treated with 3-MA resulted in a significant change in AO-positive cells and cytotoxicity. In an in vivo study, the combination treatment had anti-tumor growth effects. These novel findings suggest that combined treatment is a potential therapeutic strategy not only for androgen-dependent prostate cancer but also for androgen-independent prostate cancer.",
author = "Chiu, {Hui Wen} and Chen, {Yi An} and Ho, {Sheng Yow} and Wang, {Ying Jan}",
year = "2012",
month = "2",
day = "20",
doi = "10.1371/journal.pone.0031579",
language = "English",
volume = "7",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "2",

}

TY - JOUR

T1 - Arsenic trioxide enhances the radiation sensitivity of androgen-dependent and -independent human prostate cancer cells

AU - Chiu, Hui Wen

AU - Chen, Yi An

AU - Ho, Sheng Yow

AU - Wang, Ying Jan

PY - 2012/2/20

Y1 - 2012/2/20

N2 - Prostate cancer is the most common malignancy in men. In the present study, LNCaP (androgen-sensitive human prostate cancer cells) and PC-3 cells (androgen-independent human prostate cancer cells) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with arsenic trioxide (ATO) and to determine the underlying mechanisms in vitro and in vivo. We found that IR combined with ATO increases the therapeutic efficacy compared to individual treatments in LNCaP and PC-3 human prostate cancer cells. In addition, combined treatment showed enhanced reactive oxygen species (ROS) generation compared to treatment with ATO or IR alone in PC-3 cells. Combined treatment induced autophagy and apoptosis in LNCaP cells, and mainly induced autophagy in PC-3 cells. The cell death that was induced by the combined treatment was primarily the result of inhibition of the Akt/mTOR signaling pathways. Furthermore, we found that the combined treatment of cells pre-treated with 3-MA resulted in a significant change in AO-positive cells and cytotoxicity. In an in vivo study, the combination treatment had anti-tumor growth effects. These novel findings suggest that combined treatment is a potential therapeutic strategy not only for androgen-dependent prostate cancer but also for androgen-independent prostate cancer.

AB - Prostate cancer is the most common malignancy in men. In the present study, LNCaP (androgen-sensitive human prostate cancer cells) and PC-3 cells (androgen-independent human prostate cancer cells) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with arsenic trioxide (ATO) and to determine the underlying mechanisms in vitro and in vivo. We found that IR combined with ATO increases the therapeutic efficacy compared to individual treatments in LNCaP and PC-3 human prostate cancer cells. In addition, combined treatment showed enhanced reactive oxygen species (ROS) generation compared to treatment with ATO or IR alone in PC-3 cells. Combined treatment induced autophagy and apoptosis in LNCaP cells, and mainly induced autophagy in PC-3 cells. The cell death that was induced by the combined treatment was primarily the result of inhibition of the Akt/mTOR signaling pathways. Furthermore, we found that the combined treatment of cells pre-treated with 3-MA resulted in a significant change in AO-positive cells and cytotoxicity. In an in vivo study, the combination treatment had anti-tumor growth effects. These novel findings suggest that combined treatment is a potential therapeutic strategy not only for androgen-dependent prostate cancer but also for androgen-independent prostate cancer.

UR - http://www.scopus.com/inward/record.url?scp=84857411790&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84857411790&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0031579

DO - 10.1371/journal.pone.0031579

M3 - Article

C2 - 22363680

AN - SCOPUS:84857411790

VL - 7

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 2

M1 - e31579

ER -