Aqueous synthesis of Ag and Mn co-doped In2S3/ZnS quantum dots with tunable emission for dual-modal targeted imaging

Pei Yu Lai, Chih Ching Huang, Tzung Han Chou, Keng-Liang Ou, Jia Yaw Chang

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Here, we present the microwave-assisted synthesis of In2S3/ZnS core/shell quantum dots (QDs) co-doped with Ag+ and Mn2+ (referred to as AgMn:In2S3/ZnS). Ag+ altered the optical properties of the host QDs, whereas the spin magnetic moment (S =5/2) of Mn2+ efficiently induced the longitudinal relaxation of water protons. To the best of our knowledge, this is the first report of the aqueous synthesis of color-tunable AgMn:In2S3/ZnS core/shell QDs with magnetic properties. The synthetic procedure is rapid, facile, reproducible, and scalable. The obtained QDs offered a satisfactory quantum yield (45%), high longitudinal relaxivity (6.84s-1 mM-1), and robust photostability. In addition, they exhibited excellent stability over a wide pH range (5-12) and high ionic strength (0.15-2.0M NaCl). As seen by confocal microscopy and magnetic resonance imaging, AgMn:In2S3/ZnS conjugated to hyaluronic acid (referred to as AgMn:In2S3/ZnS@HA) efficiently and specifically targeted cluster determinant 44, a receptor overexpressed on cancer cells. Moreover, AgMn:In2S3/ZnS@HA showed negligible cytotoxicity in vitro and in vivo, rendering it a promising diagnostic probe for dual-modal imaging in clinical applications. Statement of Significance: In this manuscript, we reported a facial and rapid method to prepare In2S3/ZnS core/shell quantum dots (QDs) co-doped with Ag+ and Mn2+ (referred to as AgMn:In2S3/ZnS). Ag+ dopants were used to alter the optical properties of the In2S3 host, whereas Mn2+ co-dopants with their unpaired electrons provided paramagnetic properties. The emission wavelength of the core/shell QDs could be tuned from 550 to 743nm with a maximum PL quantum yield of 45%. The resulting core/shell QDs also maintained a stable emission in aqueous solution at broad ranges of pH (5-12) and ionic strength (0.15-2.0M NaCl), as well as a high photostability under continuous irradiation. In vivo cytotoxicity experiments showed that up to 500μg/mL AgMn:In2S3/ZnS@HA did not cause obvious toxicity to zebrafish embryos. In vitro targeted cell luminescence and magnetic resonance imaging showed that AgMn:In2S3/ZnS conjugated to hyaluronic acid was selectively and efficiently internalized in CD44-expressing tumor cells, confirming that the resultant QDs could function as dual-modal imaging probes for accurate diagnosis.

Original languageEnglish
JournalActa Biomaterialia
DOIs
Publication statusAccepted/In press - Sep 3 2016

Fingerprint

Quantum Dots
Semiconductor quantum dots
Imaging techniques
Hyaluronic acid
Quantum yield
Hyaluronic Acid
Magnetic resonance
Cytotoxicity
Ionic strength
Osmolar Concentration
Optical properties
Cells
Doping (additives)
Magnetic Resonance Imaging
Confocal microscopy
Zebrafish
Microwaves
Luminescence
Magnetic moments
Confocal Microscopy

Keywords

  • Hyaluronic acid
  • InS
  • Luminescence probe
  • Quantum dots
  • T1-weighted images

ASJC Scopus subject areas

  • Biotechnology
  • Biochemistry
  • Biomaterials
  • Biomedical Engineering
  • Molecular Biology

Cite this

Aqueous synthesis of Ag and Mn co-doped In2S3/ZnS quantum dots with tunable emission for dual-modal targeted imaging. / Lai, Pei Yu; Huang, Chih Ching; Chou, Tzung Han; Ou, Keng-Liang; Chang, Jia Yaw.

In: Acta Biomaterialia, 03.09.2016.

Research output: Contribution to journalArticle

Lai, Pei Yu ; Huang, Chih Ching ; Chou, Tzung Han ; Ou, Keng-Liang ; Chang, Jia Yaw. / Aqueous synthesis of Ag and Mn co-doped In2S3/ZnS quantum dots with tunable emission for dual-modal targeted imaging. In: Acta Biomaterialia. 2016.
@article{b0bc13c33f4a407596e49519439258df,
title = "Aqueous synthesis of Ag and Mn co-doped In2S3/ZnS quantum dots with tunable emission for dual-modal targeted imaging",
abstract = "Here, we present the microwave-assisted synthesis of In2S3/ZnS core/shell quantum dots (QDs) co-doped with Ag+ and Mn2+ (referred to as AgMn:In2S3/ZnS). Ag+ altered the optical properties of the host QDs, whereas the spin magnetic moment (S =5/2) of Mn2+ efficiently induced the longitudinal relaxation of water protons. To the best of our knowledge, this is the first report of the aqueous synthesis of color-tunable AgMn:In2S3/ZnS core/shell QDs with magnetic properties. The synthetic procedure is rapid, facile, reproducible, and scalable. The obtained QDs offered a satisfactory quantum yield (45{\%}), high longitudinal relaxivity (6.84s-1 mM-1), and robust photostability. In addition, they exhibited excellent stability over a wide pH range (5-12) and high ionic strength (0.15-2.0M NaCl). As seen by confocal microscopy and magnetic resonance imaging, AgMn:In2S3/ZnS conjugated to hyaluronic acid (referred to as AgMn:In2S3/ZnS@HA) efficiently and specifically targeted cluster determinant 44, a receptor overexpressed on cancer cells. Moreover, AgMn:In2S3/ZnS@HA showed negligible cytotoxicity in vitro and in vivo, rendering it a promising diagnostic probe for dual-modal imaging in clinical applications. Statement of Significance: In this manuscript, we reported a facial and rapid method to prepare In2S3/ZnS core/shell quantum dots (QDs) co-doped with Ag+ and Mn2+ (referred to as AgMn:In2S3/ZnS). Ag+ dopants were used to alter the optical properties of the In2S3 host, whereas Mn2+ co-dopants with their unpaired electrons provided paramagnetic properties. The emission wavelength of the core/shell QDs could be tuned from 550 to 743nm with a maximum PL quantum yield of 45{\%}. The resulting core/shell QDs also maintained a stable emission in aqueous solution at broad ranges of pH (5-12) and ionic strength (0.15-2.0M NaCl), as well as a high photostability under continuous irradiation. In vivo cytotoxicity experiments showed that up to 500μg/mL AgMn:In2S3/ZnS@HA did not cause obvious toxicity to zebrafish embryos. In vitro targeted cell luminescence and magnetic resonance imaging showed that AgMn:In2S3/ZnS conjugated to hyaluronic acid was selectively and efficiently internalized in CD44-expressing tumor cells, confirming that the resultant QDs could function as dual-modal imaging probes for accurate diagnosis.",
keywords = "Hyaluronic acid, InS, Luminescence probe, Quantum dots, T1-weighted images",
author = "Lai, {Pei Yu} and Huang, {Chih Ching} and Chou, {Tzung Han} and Keng-Liang Ou and Chang, {Jia Yaw}",
year = "2016",
month = "9",
day = "3",
doi = "10.1016/j.actbio.2016.12.028",
language = "English",
journal = "Acta Biomaterialia",
issn = "1742-7061",
publisher = "Elsevier BV",

}

TY - JOUR

T1 - Aqueous synthesis of Ag and Mn co-doped In2S3/ZnS quantum dots with tunable emission for dual-modal targeted imaging

AU - Lai, Pei Yu

AU - Huang, Chih Ching

AU - Chou, Tzung Han

AU - Ou, Keng-Liang

AU - Chang, Jia Yaw

PY - 2016/9/3

Y1 - 2016/9/3

N2 - Here, we present the microwave-assisted synthesis of In2S3/ZnS core/shell quantum dots (QDs) co-doped with Ag+ and Mn2+ (referred to as AgMn:In2S3/ZnS). Ag+ altered the optical properties of the host QDs, whereas the spin magnetic moment (S =5/2) of Mn2+ efficiently induced the longitudinal relaxation of water protons. To the best of our knowledge, this is the first report of the aqueous synthesis of color-tunable AgMn:In2S3/ZnS core/shell QDs with magnetic properties. The synthetic procedure is rapid, facile, reproducible, and scalable. The obtained QDs offered a satisfactory quantum yield (45%), high longitudinal relaxivity (6.84s-1 mM-1), and robust photostability. In addition, they exhibited excellent stability over a wide pH range (5-12) and high ionic strength (0.15-2.0M NaCl). As seen by confocal microscopy and magnetic resonance imaging, AgMn:In2S3/ZnS conjugated to hyaluronic acid (referred to as AgMn:In2S3/ZnS@HA) efficiently and specifically targeted cluster determinant 44, a receptor overexpressed on cancer cells. Moreover, AgMn:In2S3/ZnS@HA showed negligible cytotoxicity in vitro and in vivo, rendering it a promising diagnostic probe for dual-modal imaging in clinical applications. Statement of Significance: In this manuscript, we reported a facial and rapid method to prepare In2S3/ZnS core/shell quantum dots (QDs) co-doped with Ag+ and Mn2+ (referred to as AgMn:In2S3/ZnS). Ag+ dopants were used to alter the optical properties of the In2S3 host, whereas Mn2+ co-dopants with their unpaired electrons provided paramagnetic properties. The emission wavelength of the core/shell QDs could be tuned from 550 to 743nm with a maximum PL quantum yield of 45%. The resulting core/shell QDs also maintained a stable emission in aqueous solution at broad ranges of pH (5-12) and ionic strength (0.15-2.0M NaCl), as well as a high photostability under continuous irradiation. In vivo cytotoxicity experiments showed that up to 500μg/mL AgMn:In2S3/ZnS@HA did not cause obvious toxicity to zebrafish embryos. In vitro targeted cell luminescence and magnetic resonance imaging showed that AgMn:In2S3/ZnS conjugated to hyaluronic acid was selectively and efficiently internalized in CD44-expressing tumor cells, confirming that the resultant QDs could function as dual-modal imaging probes for accurate diagnosis.

AB - Here, we present the microwave-assisted synthesis of In2S3/ZnS core/shell quantum dots (QDs) co-doped with Ag+ and Mn2+ (referred to as AgMn:In2S3/ZnS). Ag+ altered the optical properties of the host QDs, whereas the spin magnetic moment (S =5/2) of Mn2+ efficiently induced the longitudinal relaxation of water protons. To the best of our knowledge, this is the first report of the aqueous synthesis of color-tunable AgMn:In2S3/ZnS core/shell QDs with magnetic properties. The synthetic procedure is rapid, facile, reproducible, and scalable. The obtained QDs offered a satisfactory quantum yield (45%), high longitudinal relaxivity (6.84s-1 mM-1), and robust photostability. In addition, they exhibited excellent stability over a wide pH range (5-12) and high ionic strength (0.15-2.0M NaCl). As seen by confocal microscopy and magnetic resonance imaging, AgMn:In2S3/ZnS conjugated to hyaluronic acid (referred to as AgMn:In2S3/ZnS@HA) efficiently and specifically targeted cluster determinant 44, a receptor overexpressed on cancer cells. Moreover, AgMn:In2S3/ZnS@HA showed negligible cytotoxicity in vitro and in vivo, rendering it a promising diagnostic probe for dual-modal imaging in clinical applications. Statement of Significance: In this manuscript, we reported a facial and rapid method to prepare In2S3/ZnS core/shell quantum dots (QDs) co-doped with Ag+ and Mn2+ (referred to as AgMn:In2S3/ZnS). Ag+ dopants were used to alter the optical properties of the In2S3 host, whereas Mn2+ co-dopants with their unpaired electrons provided paramagnetic properties. The emission wavelength of the core/shell QDs could be tuned from 550 to 743nm with a maximum PL quantum yield of 45%. The resulting core/shell QDs also maintained a stable emission in aqueous solution at broad ranges of pH (5-12) and ionic strength (0.15-2.0M NaCl), as well as a high photostability under continuous irradiation. In vivo cytotoxicity experiments showed that up to 500μg/mL AgMn:In2S3/ZnS@HA did not cause obvious toxicity to zebrafish embryos. In vitro targeted cell luminescence and magnetic resonance imaging showed that AgMn:In2S3/ZnS conjugated to hyaluronic acid was selectively and efficiently internalized in CD44-expressing tumor cells, confirming that the resultant QDs could function as dual-modal imaging probes for accurate diagnosis.

KW - Hyaluronic acid

KW - InS

KW - Luminescence probe

KW - Quantum dots

KW - T1-weighted images

UR - http://www.scopus.com/inward/record.url?scp=85008324703&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85008324703&partnerID=8YFLogxK

U2 - 10.1016/j.actbio.2016.12.028

DO - 10.1016/j.actbio.2016.12.028

M3 - Article

JO - Acta Biomaterialia

JF - Acta Biomaterialia

SN - 1742-7061

ER -