Apoptotic insults to human chondrocytes induced by sodium nitroprusside are involved in sequential events, including cytoskeletal remodeling, phosphorylation of mitogen-activated protein kinase kinase kinase-1/c-jun N-terminal kinase, and baxmitochondria-mediated caspase activation

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)

Abstract

Nitric oxide (NO) can regulate chondrocyte activities. This study was aimed to evaluate the molecular mechanisms of NO donor sodium nitroprusside (SNP)-induced insults to human chondrocytes. Exposure of human chondrocytes to SNP increased cellular NO levels but decreased cell viability in concentration- and time-dependent manners. SNP time dependently induced DNA fragmentation and cell apoptosis. Treatment with 2-phenyl-4,4,5,5-tetramethyl-imidazoline-l-oxyl 3-oxide, an NO scavenger, significantly lowered SNP-induced cell injuries. Administration of SNP interrupted F-actin and microtubule cytoskeletons and stimulated phosphorylation of mitogen-activated protein kinase kinase kinase-1 (MEKK1) and c-Jun N-terminal kinase (JNK). Similar to SNP, cytochalasin D, an inhibitor of F-actin formation, disturbed F-actin polymerization and increased MEKK1 and JNK activations. Overexpression of a dominant negative mutant of MEKK1 (dnMEKl) in human chondrocytes significantly ameliorated SNP-induced cell apoptosis. Exposure to SNP promoted Bax translocation from the cytoplasm to mitochondria, but application of dnMEKKl lowered the translocation. SNP time dependently decreased the mitochondrial membrane potential, complex I NADH dehydrogenase activity, and cellular ATP levels, but increased the release of cytochrome c from mitochondria to the cytoplasm. Activities of caspase-9, -3, and -6 were sequentially increased by SNP administration. This study shows that SNP can induce apoptosis of human chondrocytes through sequential events, including cytoskeletal remodeling, activation of MEKK1/JNK, Bax translocation, mitochondrial dysfunction, cytochrome c release, caspase activation, and DNA fragmentation.

Original languageEnglish
Pages (from-to)1018-1026
Number of pages9
JournalJournal of Orthopaedic Research
Volume26
Issue number7
DOIs
Publication statusPublished - Jul 2008

Keywords

  • Bax translocation
  • Cytoskeletal remodeling
  • Human chondrocytes
  • Mitochondria-dependent apoptotic mechanism
  • MKKK1/JNK
  • Nitric oxide

ASJC Scopus subject areas

  • Orthopedics and Sports Medicine
  • Medicine(all)

Fingerprint Dive into the research topics of 'Apoptotic insults to human chondrocytes induced by sodium nitroprusside are involved in sequential events, including cytoskeletal remodeling, phosphorylation of mitogen-activated protein kinase kinase kinase-1/c-jun N-terminal kinase, and baxmitochondria-mediated caspase activation'. Together they form a unique fingerprint.

Cite this