Alternatively spliced MBNL1 isoforms exhibit differential influence on enhancing brown adipogenesis

Research output: Contribution to journalArticle

Abstract

Browning of white adipocytes (WAs) (also referred as beige cells) was demonstrated to execute thermogenesis by consuming stored lipids as do brown adipocytes (BAs), and this is highly related to metabolic homeostasis. Alternative splicing (AS) constitutes a pivotal mechanism for defining cellular fates and functional specifications. Nevertheless, the impacts of AS regulation on the browning of WAs have not been comprehensively investigated. In this study, we first identified the discriminative expression and splicing profiles of the muscleblind-like 1 (MBNL1) gene in postnatal brown adipose tissues (BATs) compared to those of embryonic BATs. A shift in the MBNL1+ex 5 isoform 7 (MBNL17) to MBNL1−ex 5 isoform 1 (MBNL11) was characterized throughout BAT development or during the in vitro browning of pre-WAs, 3T3-L1 cells. The interplay between MBNL1 and the exonic CCUG motif constitutes an autoregulatory mechanism for excluding MBNL1 exon 5. The simultaneous association of RNA-binding motif protein 4a (RBM4a) with exonic and intronic CU elements collaboratively mediates the skipping of MBNL1 exon 5. Overexpressing the MBNL11 isoform exhibited a more-prominent effect than that of the MBNL17 isoform on programming its own transcripts and beige cell-related splicing events in a CCUG motif-mediated manner. In addition to splicing regulation, overexpression of the MBNL11 and MBNL17 isoforms differentially enhanced beige adipogenic signatures of 3T3-L1 cells. Our findings demonstrated that MBNL1 constitutes an emerging and autoregulatory mechanism involved in development of beige cells.

Original languageEnglish
Article number194437
JournalBiochimica et Biophysica Acta - Gene Regulatory Mechanisms
DOIs
Publication statusAccepted/In press - Jan 1 2019

Fingerprint

Adipogenesis
Protein Isoforms
White Adipocytes
Brown Adipose Tissue
3T3-L1 Cells
Alternative Splicing
Tissue
Exons
Brown Adipocytes
RNA-Binding Proteins
Thermogenesis
Homeostasis
Genes
RNA
Specifications
Lipids

Keywords

  • Alternative splicing
  • Beige adipocyte
  • MBNL1
  • RBM4a

ASJC Scopus subject areas

  • Biophysics
  • Structural Biology
  • Biochemistry
  • Molecular Biology
  • Genetics

Cite this

@article{bed89082e9e147a885748554d7516583,
title = "Alternatively spliced MBNL1 isoforms exhibit differential influence on enhancing brown adipogenesis",
abstract = "Browning of white adipocytes (WAs) (also referred as beige cells) was demonstrated to execute thermogenesis by consuming stored lipids as do brown adipocytes (BAs), and this is highly related to metabolic homeostasis. Alternative splicing (AS) constitutes a pivotal mechanism for defining cellular fates and functional specifications. Nevertheless, the impacts of AS regulation on the browning of WAs have not been comprehensively investigated. In this study, we first identified the discriminative expression and splicing profiles of the muscleblind-like 1 (MBNL1) gene in postnatal brown adipose tissues (BATs) compared to those of embryonic BATs. A shift in the MBNL1+ex 5 isoform 7 (MBNL17) to MBNL1−ex 5 isoform 1 (MBNL11) was characterized throughout BAT development or during the in vitro browning of pre-WAs, 3T3-L1 cells. The interplay between MBNL1 and the exonic CCUG motif constitutes an autoregulatory mechanism for excluding MBNL1 exon 5. The simultaneous association of RNA-binding motif protein 4a (RBM4a) with exonic and intronic CU elements collaboratively mediates the skipping of MBNL1 exon 5. Overexpressing the MBNL11 isoform exhibited a more-prominent effect than that of the MBNL17 isoform on programming its own transcripts and beige cell-related splicing events in a CCUG motif-mediated manner. In addition to splicing regulation, overexpression of the MBNL11 and MBNL17 isoforms differentially enhanced beige adipogenic signatures of 3T3-L1 cells. Our findings demonstrated that MBNL1 constitutes an emerging and autoregulatory mechanism involved in development of beige cells.",
keywords = "Alternative splicing, Beige adipocyte, MBNL1, RBM4a",
author = "Hung, {Ching Sheng} and Lin, {Jung Chun}",
year = "2019",
month = "1",
day = "1",
doi = "10.1016/j.bbagrm.2019.194437",
language = "English",
journal = "Biochimica et Biophysica Acta - Gene Regulatory Mechanisms",
issn = "1874-9399",
publisher = "Elsevier",

}

TY - JOUR

T1 - Alternatively spliced MBNL1 isoforms exhibit differential influence on enhancing brown adipogenesis

AU - Hung, Ching Sheng

AU - Lin, Jung Chun

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Browning of white adipocytes (WAs) (also referred as beige cells) was demonstrated to execute thermogenesis by consuming stored lipids as do brown adipocytes (BAs), and this is highly related to metabolic homeostasis. Alternative splicing (AS) constitutes a pivotal mechanism for defining cellular fates and functional specifications. Nevertheless, the impacts of AS regulation on the browning of WAs have not been comprehensively investigated. In this study, we first identified the discriminative expression and splicing profiles of the muscleblind-like 1 (MBNL1) gene in postnatal brown adipose tissues (BATs) compared to those of embryonic BATs. A shift in the MBNL1+ex 5 isoform 7 (MBNL17) to MBNL1−ex 5 isoform 1 (MBNL11) was characterized throughout BAT development or during the in vitro browning of pre-WAs, 3T3-L1 cells. The interplay between MBNL1 and the exonic CCUG motif constitutes an autoregulatory mechanism for excluding MBNL1 exon 5. The simultaneous association of RNA-binding motif protein 4a (RBM4a) with exonic and intronic CU elements collaboratively mediates the skipping of MBNL1 exon 5. Overexpressing the MBNL11 isoform exhibited a more-prominent effect than that of the MBNL17 isoform on programming its own transcripts and beige cell-related splicing events in a CCUG motif-mediated manner. In addition to splicing regulation, overexpression of the MBNL11 and MBNL17 isoforms differentially enhanced beige adipogenic signatures of 3T3-L1 cells. Our findings demonstrated that MBNL1 constitutes an emerging and autoregulatory mechanism involved in development of beige cells.

AB - Browning of white adipocytes (WAs) (also referred as beige cells) was demonstrated to execute thermogenesis by consuming stored lipids as do brown adipocytes (BAs), and this is highly related to metabolic homeostasis. Alternative splicing (AS) constitutes a pivotal mechanism for defining cellular fates and functional specifications. Nevertheless, the impacts of AS regulation on the browning of WAs have not been comprehensively investigated. In this study, we first identified the discriminative expression and splicing profiles of the muscleblind-like 1 (MBNL1) gene in postnatal brown adipose tissues (BATs) compared to those of embryonic BATs. A shift in the MBNL1+ex 5 isoform 7 (MBNL17) to MBNL1−ex 5 isoform 1 (MBNL11) was characterized throughout BAT development or during the in vitro browning of pre-WAs, 3T3-L1 cells. The interplay between MBNL1 and the exonic CCUG motif constitutes an autoregulatory mechanism for excluding MBNL1 exon 5. The simultaneous association of RNA-binding motif protein 4a (RBM4a) with exonic and intronic CU elements collaboratively mediates the skipping of MBNL1 exon 5. Overexpressing the MBNL11 isoform exhibited a more-prominent effect than that of the MBNL17 isoform on programming its own transcripts and beige cell-related splicing events in a CCUG motif-mediated manner. In addition to splicing regulation, overexpression of the MBNL11 and MBNL17 isoforms differentially enhanced beige adipogenic signatures of 3T3-L1 cells. Our findings demonstrated that MBNL1 constitutes an emerging and autoregulatory mechanism involved in development of beige cells.

KW - Alternative splicing

KW - Beige adipocyte

KW - MBNL1

KW - RBM4a

UR - http://www.scopus.com/inward/record.url?scp=85075403536&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85075403536&partnerID=8YFLogxK

U2 - 10.1016/j.bbagrm.2019.194437

DO - 10.1016/j.bbagrm.2019.194437

M3 - Article

C2 - 31730826

AN - SCOPUS:85075403536

JO - Biochimica et Biophysica Acta - Gene Regulatory Mechanisms

JF - Biochimica et Biophysica Acta - Gene Regulatory Mechanisms

SN - 1874-9399

M1 - 194437

ER -