Abstract

Gastric cancer is the second most common cause of cancer mortality worldwide. Most gastric cancer patients are asymptomatic until the advanced stages, for which current therapeutic treatments are suboptimal. 5-Fluorouracil (5-FU), an antimetabolite agent, is widely used in gastric cancer therapy. However, the presence of drug resistance in gastric cancer patients reduces the cytotoxic activity of 5-FU. In gastric cancer, no research has yet been conducted to analyze the effect of alpha 7-nicotinic acetylcholine receptor (A7-nAChR) on the therapeutic response to 5-FU. In this study, we generated A7-nAChR knockdown (A7-nAChR-KD) AGS cells by a small interfering RNA (siRNA) technique in gastric cancer cells. The anti-proliferative effects of 5-FU were determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, a terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay, and cell cycle determination. We found that A7-nAChR-KD cells were more resistant to 5-FU treatment compared with the scrambled control cells according to the MTT assay. The apoptotic cell population was increased more in scrambled control cells treated with 5-FU than A7-nAChR-KD cells according to the cell cycle distribution and TUNEL assays. We analyzed expression levels of survival and apoptosis-associated proteins (pAkt, Akt, Mcl-1, Bcl-2, Bad, and Bax) altered by 5-FU treatment. Survival and antiapoptosis signaling (pAkt, Akt, Mcl-1 and Bcl-2) was downregulated, and the proapoptotic proteins (Bad and Bax) were upregulated in 5-FU-treated control cells but expression levels of Bcl-2, Bad, and Bad were not altered in 5-FU-treated A7-nAChR-KD cells. This is consistent with A7-nAChR-KD cells exhibiting more resistance to 5-FU treatment. In our study, we carried out an in vitro study on AGS gastric cancer cell line to elucidate the anticancer efficacy and molecular mechanisms of A7-nAChR silencing on 5-FU-induced cell death. The results clearly showed that depletion of A7-nAChR suppressed the drug sensitivity of gastric cancer cells to 5-FU treatment.

Original languageEnglish
Pages (from-to)9537-9544
JournalTumor Biology
Volume36
Issue number12
DOIs
Publication statusAccepted/In press - Jul 3 2015

Fingerprint

Nicotinic Receptors
Fluorouracil
Stomach Neoplasms
In Situ Nick-End Labeling
Cell Cycle
bcl-Associated Death Protein
Therapeutics
Antimetabolites
bcl-2-Associated X Protein
Survival
DNA Nucleotidylexotransferase
Drug Resistance
Small Interfering RNA
Cell Death
Down-Regulation
Apoptosis

Keywords

  • 5-Fluorouracil
  • 5-FU
  • A7-nAChR
  • Gastric cancer

ASJC Scopus subject areas

  • Cancer Research

Cite this

@article{f34b6aa40091401e921385a5ade76b66,
title = "Alpha 7-nicotinic acetylcholine receptor mediates the sensitivity of gastric cancer cells to 5-fluorouracil",
abstract = "Gastric cancer is the second most common cause of cancer mortality worldwide. Most gastric cancer patients are asymptomatic until the advanced stages, for which current therapeutic treatments are suboptimal. 5-Fluorouracil (5-FU), an antimetabolite agent, is widely used in gastric cancer therapy. However, the presence of drug resistance in gastric cancer patients reduces the cytotoxic activity of 5-FU. In gastric cancer, no research has yet been conducted to analyze the effect of alpha 7-nicotinic acetylcholine receptor (A7-nAChR) on the therapeutic response to 5-FU. In this study, we generated A7-nAChR knockdown (A7-nAChR-KD) AGS cells by a small interfering RNA (siRNA) technique in gastric cancer cells. The anti-proliferative effects of 5-FU were determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, a terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay, and cell cycle determination. We found that A7-nAChR-KD cells were more resistant to 5-FU treatment compared with the scrambled control cells according to the MTT assay. The apoptotic cell population was increased more in scrambled control cells treated with 5-FU than A7-nAChR-KD cells according to the cell cycle distribution and TUNEL assays. We analyzed expression levels of survival and apoptosis-associated proteins (pAkt, Akt, Mcl-1, Bcl-2, Bad, and Bax) altered by 5-FU treatment. Survival and antiapoptosis signaling (pAkt, Akt, Mcl-1 and Bcl-2) was downregulated, and the proapoptotic proteins (Bad and Bax) were upregulated in 5-FU-treated control cells but expression levels of Bcl-2, Bad, and Bad were not altered in 5-FU-treated A7-nAChR-KD cells. This is consistent with A7-nAChR-KD cells exhibiting more resistance to 5-FU treatment. In our study, we carried out an in vitro study on AGS gastric cancer cell line to elucidate the anticancer efficacy and molecular mechanisms of A7-nAChR silencing on 5-FU-induced cell death. The results clearly showed that depletion of A7-nAChR suppressed the drug sensitivity of gastric cancer cells to 5-FU treatment.",
keywords = "5-Fluorouracil, 5-FU, A7-nAChR, Gastric cancer",
author = "Wei-Yu Chen and Huang, {Chien Yu} and Cheng, {Wan Li} and Chin-Sheng Hung and Ming-Te Huang and Cheng-Jeng Tai and Yen-Nien Liu and Chi-Long Chen and Yu-Jia Chang",
year = "2015",
month = "7",
day = "3",
doi = "10.1007/s13277-015-3668-8",
language = "English",
volume = "36",
pages = "9537--9544",
journal = "Tumor Biology",
issn = "1010-4283",
publisher = "Springer Netherlands",
number = "12",

}

TY - JOUR

T1 - Alpha 7-nicotinic acetylcholine receptor mediates the sensitivity of gastric cancer cells to 5-fluorouracil

AU - Chen, Wei-Yu

AU - Huang, Chien Yu

AU - Cheng, Wan Li

AU - Hung, Chin-Sheng

AU - Huang, Ming-Te

AU - Tai, Cheng-Jeng

AU - Liu, Yen-Nien

AU - Chen, Chi-Long

AU - Chang, Yu-Jia

PY - 2015/7/3

Y1 - 2015/7/3

N2 - Gastric cancer is the second most common cause of cancer mortality worldwide. Most gastric cancer patients are asymptomatic until the advanced stages, for which current therapeutic treatments are suboptimal. 5-Fluorouracil (5-FU), an antimetabolite agent, is widely used in gastric cancer therapy. However, the presence of drug resistance in gastric cancer patients reduces the cytotoxic activity of 5-FU. In gastric cancer, no research has yet been conducted to analyze the effect of alpha 7-nicotinic acetylcholine receptor (A7-nAChR) on the therapeutic response to 5-FU. In this study, we generated A7-nAChR knockdown (A7-nAChR-KD) AGS cells by a small interfering RNA (siRNA) technique in gastric cancer cells. The anti-proliferative effects of 5-FU were determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, a terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay, and cell cycle determination. We found that A7-nAChR-KD cells were more resistant to 5-FU treatment compared with the scrambled control cells according to the MTT assay. The apoptotic cell population was increased more in scrambled control cells treated with 5-FU than A7-nAChR-KD cells according to the cell cycle distribution and TUNEL assays. We analyzed expression levels of survival and apoptosis-associated proteins (pAkt, Akt, Mcl-1, Bcl-2, Bad, and Bax) altered by 5-FU treatment. Survival and antiapoptosis signaling (pAkt, Akt, Mcl-1 and Bcl-2) was downregulated, and the proapoptotic proteins (Bad and Bax) were upregulated in 5-FU-treated control cells but expression levels of Bcl-2, Bad, and Bad were not altered in 5-FU-treated A7-nAChR-KD cells. This is consistent with A7-nAChR-KD cells exhibiting more resistance to 5-FU treatment. In our study, we carried out an in vitro study on AGS gastric cancer cell line to elucidate the anticancer efficacy and molecular mechanisms of A7-nAChR silencing on 5-FU-induced cell death. The results clearly showed that depletion of A7-nAChR suppressed the drug sensitivity of gastric cancer cells to 5-FU treatment.

AB - Gastric cancer is the second most common cause of cancer mortality worldwide. Most gastric cancer patients are asymptomatic until the advanced stages, for which current therapeutic treatments are suboptimal. 5-Fluorouracil (5-FU), an antimetabolite agent, is widely used in gastric cancer therapy. However, the presence of drug resistance in gastric cancer patients reduces the cytotoxic activity of 5-FU. In gastric cancer, no research has yet been conducted to analyze the effect of alpha 7-nicotinic acetylcholine receptor (A7-nAChR) on the therapeutic response to 5-FU. In this study, we generated A7-nAChR knockdown (A7-nAChR-KD) AGS cells by a small interfering RNA (siRNA) technique in gastric cancer cells. The anti-proliferative effects of 5-FU were determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, a terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay, and cell cycle determination. We found that A7-nAChR-KD cells were more resistant to 5-FU treatment compared with the scrambled control cells according to the MTT assay. The apoptotic cell population was increased more in scrambled control cells treated with 5-FU than A7-nAChR-KD cells according to the cell cycle distribution and TUNEL assays. We analyzed expression levels of survival and apoptosis-associated proteins (pAkt, Akt, Mcl-1, Bcl-2, Bad, and Bax) altered by 5-FU treatment. Survival and antiapoptosis signaling (pAkt, Akt, Mcl-1 and Bcl-2) was downregulated, and the proapoptotic proteins (Bad and Bax) were upregulated in 5-FU-treated control cells but expression levels of Bcl-2, Bad, and Bad were not altered in 5-FU-treated A7-nAChR-KD cells. This is consistent with A7-nAChR-KD cells exhibiting more resistance to 5-FU treatment. In our study, we carried out an in vitro study on AGS gastric cancer cell line to elucidate the anticancer efficacy and molecular mechanisms of A7-nAChR silencing on 5-FU-induced cell death. The results clearly showed that depletion of A7-nAChR suppressed the drug sensitivity of gastric cancer cells to 5-FU treatment.

KW - 5-Fluorouracil

KW - 5-FU

KW - A7-nAChR

KW - Gastric cancer

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-84952872497&origin=resultslist&sort=plf-f&src=s&st1=Alpha+7-nicotinic+acetylcholine+receptor+mediates+the+sensitivity+of+gastric+cancer+cells+to+5-fluorouracil&st2=&sid=25338B2186E89C372C20E45ADEC5CC0E.wsnAw8kcdt7IPYLO0V48gA%3a1510&sot=b&sdt=b&sl=122&s=TITLE-ABS-KEY%28Alpha+7-nicotinic+acetylcholine+receptor+mediates+the+sensitivity+of+gastric+cancer+cells+to+5-fluorouracil%29&relpos=0&citeCnt=2&searchTerm=#

UR - http://www.scopus.com/inward/citedby.url?scp=84934782816&partnerID=8YFLogxK

U2 - 10.1007/s13277-015-3668-8

DO - 10.1007/s13277-015-3668-8

M3 - Article

C2 - 26136123

AN - SCOPUS:84952872497

VL - 36

SP - 9537

EP - 9544

JO - Tumor Biology

JF - Tumor Biology

SN - 1010-4283

IS - 12

ER -