A novel antithrombotic effect of sulforaphane via activation of platelet adenylate cyclase: Ex vivo and in vivo studies

Thanasekaran Jayakumar, Wei Fan Chen, Wan-Jung Lu, Duen Suey Chou, George Hsiao, Chung-Yi Hsu, Joen Rong Sheu, Cheng Ying Hsieh

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

Sulforaphane is a naturally occurring isothiocyanate, which can be found in cruciferous vegetables such as broccoli and cabbage. Sulforaphane was found to have very potent inhibitory effects on tumor growth through regulation of diverse mechanisms. However, no data are available concerning the effects of sulforaphane on platelet activation and its relative issues. Activation of platelets caused by arterial thrombosis is relevant to a variety of cardiovascular diseases. Hence, the aim of this study was to examine the in vivo antithrombotic effects of sulforaphane and its possible mechanisms in platelet activation. Sulforaphane (0.125 and 0.25 mg/kg) was effective in reducing the mortality of ADP-induced acute pulmonary thromboembolism in mice. Other in vivo studies also revealed that sulforaphane (0.25 mg/kg) significantly prolonged platelet plug formation in mice. In addition, sulforaphane (15-75 μM) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen. Sulforaphane inhibited platelet activation accompanied by inhibiting relative Ca2+ mobilization; phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), mitogen-activated protein kinases (MAPKs) and Akt; and hydroxyl radical (OH{filled circle}) formation. Sulforaphane markedly increased cyclic (c)AMP, but not cyclic (c)GMP levels, and stimulated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, but not ODQ (1H-[1,2,4]Oxadiazolo[4,3-a]quinoxal in-1-one), an inhibitor of guanylate cyclase, obviously reversed the sulforaphane-mediated effects on platelet aggregation; PKC activation, p38 MAPK, Akt and VASP phosphorylation; and OH{filled circle} formation. Furthermore, a PI3-kinase inhibitor (LY294002) and a p38 MAPK inhibitor (SB203580) both significantly diminished PKC activation and p38 MAPK and Akt phosphorylation; in contrast, a PKC inhibitor (RO318220) did not diminish p38 MAPK or Akt phosphorylation stimulated by collagen. This study demonstrates for the first time that in addition to it originally being considered as an agent for prevention of tumor growth, sulforaphane possesses potent antiplatelet activity which may initially activate adenylate cyclase/cAMP, followed by inhibiting intracellular signals (such as the PI3-kinase/Akt and PLCγ2-PKC-p47 cascades) and ultimately inhibiting platelet activation. Therefore, this novel role of sulforaphane may represent a high therapeutic potential for treatment or prevention of cardiovascular diseases.

Original languageEnglish
Pages (from-to)1086-1095
Number of pages10
JournalJournal of Nutritional Biochemistry
Volume24
Issue number6
DOIs
Publication statusPublished - Jun 2013

Fingerprint

Platelet Activation
Platelets
Adenylyl Cyclases
Chemical activation
Phosphorylation
Protein Kinase C
p38 Mitogen-Activated Protein Kinases
Brassica
Protein Kinase Inhibitors
Phosphatidylinositol 3-Kinases
Platelet Aggregation
sulforafan
Tumors
Cardiovascular Diseases
Collagen
Agglomeration
2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one
Protein C Inhibitor
Guanylate Cyclase
Cyclic GMP

Keywords

  • Akt
  • Cyclic AMP
  • MAPK
  • Platelet activation
  • PLCγ2
  • Sulforaphane

ASJC Scopus subject areas

  • Biochemistry
  • Clinical Biochemistry
  • Molecular Biology
  • Endocrinology, Diabetes and Metabolism
  • Nutrition and Dietetics

Cite this

@article{5742c76f2cbc46cf87fe6b21067470cb,
title = "A novel antithrombotic effect of sulforaphane via activation of platelet adenylate cyclase: Ex vivo and in vivo studies",
abstract = "Sulforaphane is a naturally occurring isothiocyanate, which can be found in cruciferous vegetables such as broccoli and cabbage. Sulforaphane was found to have very potent inhibitory effects on tumor growth through regulation of diverse mechanisms. However, no data are available concerning the effects of sulforaphane on platelet activation and its relative issues. Activation of platelets caused by arterial thrombosis is relevant to a variety of cardiovascular diseases. Hence, the aim of this study was to examine the in vivo antithrombotic effects of sulforaphane and its possible mechanisms in platelet activation. Sulforaphane (0.125 and 0.25 mg/kg) was effective in reducing the mortality of ADP-induced acute pulmonary thromboembolism in mice. Other in vivo studies also revealed that sulforaphane (0.25 mg/kg) significantly prolonged platelet plug formation in mice. In addition, sulforaphane (15-75 μM) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen. Sulforaphane inhibited platelet activation accompanied by inhibiting relative Ca2+ mobilization; phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), mitogen-activated protein kinases (MAPKs) and Akt; and hydroxyl radical (OH{filled circle}) formation. Sulforaphane markedly increased cyclic (c)AMP, but not cyclic (c)GMP levels, and stimulated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, but not ODQ (1H-[1,2,4]Oxadiazolo[4,3-a]quinoxal in-1-one), an inhibitor of guanylate cyclase, obviously reversed the sulforaphane-mediated effects on platelet aggregation; PKC activation, p38 MAPK, Akt and VASP phosphorylation; and OH{filled circle} formation. Furthermore, a PI3-kinase inhibitor (LY294002) and a p38 MAPK inhibitor (SB203580) both significantly diminished PKC activation and p38 MAPK and Akt phosphorylation; in contrast, a PKC inhibitor (RO318220) did not diminish p38 MAPK or Akt phosphorylation stimulated by collagen. This study demonstrates for the first time that in addition to it originally being considered as an agent for prevention of tumor growth, sulforaphane possesses potent antiplatelet activity which may initially activate adenylate cyclase/cAMP, followed by inhibiting intracellular signals (such as the PI3-kinase/Akt and PLCγ2-PKC-p47 cascades) and ultimately inhibiting platelet activation. Therefore, this novel role of sulforaphane may represent a high therapeutic potential for treatment or prevention of cardiovascular diseases.",
keywords = "Akt, Cyclic AMP, MAPK, Platelet activation, PLCγ2, Sulforaphane",
author = "Thanasekaran Jayakumar and Chen, {Wei Fan} and Wan-Jung Lu and Chou, {Duen Suey} and George Hsiao and Chung-Yi Hsu and Sheu, {Joen Rong} and Hsieh, {Cheng Ying}",
year = "2013",
month = "6",
doi = "10.1016/j.jnutbio.2012.08.007",
language = "English",
volume = "24",
pages = "1086--1095",
journal = "Journal of Nutritional Biochemistry",
issn = "0955-2863",
publisher = "Elsevier Inc.",
number = "6",

}

TY - JOUR

T1 - A novel antithrombotic effect of sulforaphane via activation of platelet adenylate cyclase

T2 - Ex vivo and in vivo studies

AU - Jayakumar, Thanasekaran

AU - Chen, Wei Fan

AU - Lu, Wan-Jung

AU - Chou, Duen Suey

AU - Hsiao, George

AU - Hsu, Chung-Yi

AU - Sheu, Joen Rong

AU - Hsieh, Cheng Ying

PY - 2013/6

Y1 - 2013/6

N2 - Sulforaphane is a naturally occurring isothiocyanate, which can be found in cruciferous vegetables such as broccoli and cabbage. Sulforaphane was found to have very potent inhibitory effects on tumor growth through regulation of diverse mechanisms. However, no data are available concerning the effects of sulforaphane on platelet activation and its relative issues. Activation of platelets caused by arterial thrombosis is relevant to a variety of cardiovascular diseases. Hence, the aim of this study was to examine the in vivo antithrombotic effects of sulforaphane and its possible mechanisms in platelet activation. Sulforaphane (0.125 and 0.25 mg/kg) was effective in reducing the mortality of ADP-induced acute pulmonary thromboembolism in mice. Other in vivo studies also revealed that sulforaphane (0.25 mg/kg) significantly prolonged platelet plug formation in mice. In addition, sulforaphane (15-75 μM) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen. Sulforaphane inhibited platelet activation accompanied by inhibiting relative Ca2+ mobilization; phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), mitogen-activated protein kinases (MAPKs) and Akt; and hydroxyl radical (OH{filled circle}) formation. Sulforaphane markedly increased cyclic (c)AMP, but not cyclic (c)GMP levels, and stimulated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, but not ODQ (1H-[1,2,4]Oxadiazolo[4,3-a]quinoxal in-1-one), an inhibitor of guanylate cyclase, obviously reversed the sulforaphane-mediated effects on platelet aggregation; PKC activation, p38 MAPK, Akt and VASP phosphorylation; and OH{filled circle} formation. Furthermore, a PI3-kinase inhibitor (LY294002) and a p38 MAPK inhibitor (SB203580) both significantly diminished PKC activation and p38 MAPK and Akt phosphorylation; in contrast, a PKC inhibitor (RO318220) did not diminish p38 MAPK or Akt phosphorylation stimulated by collagen. This study demonstrates for the first time that in addition to it originally being considered as an agent for prevention of tumor growth, sulforaphane possesses potent antiplatelet activity which may initially activate adenylate cyclase/cAMP, followed by inhibiting intracellular signals (such as the PI3-kinase/Akt and PLCγ2-PKC-p47 cascades) and ultimately inhibiting platelet activation. Therefore, this novel role of sulforaphane may represent a high therapeutic potential for treatment or prevention of cardiovascular diseases.

AB - Sulforaphane is a naturally occurring isothiocyanate, which can be found in cruciferous vegetables such as broccoli and cabbage. Sulforaphane was found to have very potent inhibitory effects on tumor growth through regulation of diverse mechanisms. However, no data are available concerning the effects of sulforaphane on platelet activation and its relative issues. Activation of platelets caused by arterial thrombosis is relevant to a variety of cardiovascular diseases. Hence, the aim of this study was to examine the in vivo antithrombotic effects of sulforaphane and its possible mechanisms in platelet activation. Sulforaphane (0.125 and 0.25 mg/kg) was effective in reducing the mortality of ADP-induced acute pulmonary thromboembolism in mice. Other in vivo studies also revealed that sulforaphane (0.25 mg/kg) significantly prolonged platelet plug formation in mice. In addition, sulforaphane (15-75 μM) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen. Sulforaphane inhibited platelet activation accompanied by inhibiting relative Ca2+ mobilization; phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), mitogen-activated protein kinases (MAPKs) and Akt; and hydroxyl radical (OH{filled circle}) formation. Sulforaphane markedly increased cyclic (c)AMP, but not cyclic (c)GMP levels, and stimulated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, but not ODQ (1H-[1,2,4]Oxadiazolo[4,3-a]quinoxal in-1-one), an inhibitor of guanylate cyclase, obviously reversed the sulforaphane-mediated effects on platelet aggregation; PKC activation, p38 MAPK, Akt and VASP phosphorylation; and OH{filled circle} formation. Furthermore, a PI3-kinase inhibitor (LY294002) and a p38 MAPK inhibitor (SB203580) both significantly diminished PKC activation and p38 MAPK and Akt phosphorylation; in contrast, a PKC inhibitor (RO318220) did not diminish p38 MAPK or Akt phosphorylation stimulated by collagen. This study demonstrates for the first time that in addition to it originally being considered as an agent for prevention of tumor growth, sulforaphane possesses potent antiplatelet activity which may initially activate adenylate cyclase/cAMP, followed by inhibiting intracellular signals (such as the PI3-kinase/Akt and PLCγ2-PKC-p47 cascades) and ultimately inhibiting platelet activation. Therefore, this novel role of sulforaphane may represent a high therapeutic potential for treatment or prevention of cardiovascular diseases.

KW - Akt

KW - Cyclic AMP

KW - MAPK

KW - Platelet activation

KW - PLCγ2

KW - Sulforaphane

UR - http://www.scopus.com/inward/record.url?scp=84878018724&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84878018724&partnerID=8YFLogxK

U2 - 10.1016/j.jnutbio.2012.08.007

DO - 10.1016/j.jnutbio.2012.08.007

M3 - Article

C2 - 23246160

AN - SCOPUS:84878018724

VL - 24

SP - 1086

EP - 1095

JO - Journal of Nutritional Biochemistry

JF - Journal of Nutritional Biochemistry

SN - 0955-2863

IS - 6

ER -