Abstract
Therapeutic drug synergism intervened in cancer treatments has been demonstrated to be more effective than using a single effector. However, it remains inherently challenging, with a limited cell count from tumor samples, to achieve potent personalized drug cocktails. To address the issue above, we herein present a nanodroplet cell processing platform. The platform incorporates an automatic nanodroplet dispenser with cell array ParaStamp chips, which were fabricated by a new wax stamping approach derived from laser direct writing. Such approach enables not only the on-demand de-wetting with hydrophobic wax films on substrates but also the mask-less fabrication of non-planar microstructures (i.e. no photolithography process). The ParaStamp chip was pre-occupied with anti-cancer drugs and their associate mixtures, enabling for the spatially addressable screening of optimal drug combinations simultaneously. Each droplet with a critical volume of 200 nl containing with 100 cells was utilized. Results revealed that the optimal combination reduces approximate 28-folds of conducted doses compared with single drugs. Tumor inhibition with the optimally selected drug combination was further confirmed by using PC-3 tumor-bearing mouse models. Together, the nanodroplet cell processing platform could therefore offer new opportunities to power the personalized cancer medicine at early-stage drug screening and discovery.
Original language | English |
---|---|
Article number | 10120 |
Journal | Scientific Reports |
Volume | 9 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 1 2019 |
Externally published | Yes |
ASJC Scopus subject areas
- General