1,25-Dihydroxyvitamin D3 modulates the effects of sublethal BPA on mitochondrial function via activating PI3K-Akt pathway and 17β-estradiol secretion in rat granulosa cells

Ching Tien Lee, Jiz Yuh Wang, Kuang Yi Chou, Ming I. Hsu

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Bisphenol A (BPA), an endocrine-disrupting chemical, is capable of producing reproductive toxicity. BPA results in mitochondrial DNA (mtDNA) deletion and mitochondrial dysfunction; however, the effect of BPA on the mitochondria of ovarian granulosa cells is not clear. Further, 1,25-dihydroxyvitamin D3 (1,25D3) may play a role in reproduction, because its receptor, VDR, contributes to the inhibition of oxidative stress and predominantly exists in the nuclei of granulosa cells. Hence, the role of 1,25D3 in BPA-mediated effects on mitochondrial function was examined in this study. Primary rat granulosa cells treated with BPA, 1,25D3, or both were subjected to molecular/biochemical assays to measure cell survival, mtDNA content, mtDNA deletion, superoxide dismutase activity, levels of proteins related to mitochondrial biogenesis, and mitochondrial function. We found that cell viability was dose-dependently reduced and reactive oxygen species (ROS) levels were increased by BPA treatment. BPA administration elevated Mn-superoxide dismutase (MnSOD) expression but negatively regulated total SOD activity. 1,25D3 treatment alone increased 17β-estradiol secretion, ATP production, and cellular oxygen consumption. In cells treated with both agents, 1,25D3 enhanced BPA-induced MnSOD protein upregulation and blocked the BPA-mediated decline in total SOD activity. Furthermore, 1,25D3 attenuated BPA-mediated mtDNA deletion but showed no effect on BPA-induced increases in mtDNA content. Although BPA had no influence on the levels of peroxisome proliferator-activated receptor-γ coactivator-1 α nuclear respiratory factor-1, mitochondrial transcription factor A, or cytochrome c oxidase subunit IV, 1,25D3 plus BPA markedly increased mitochondrial biogenesis-related protein expression via the PI3K-Akt pathway. Moreover, BPA-mediated negative regulation of cytochrome c oxidase subunit I levels and 17β-estradiol secretion was attenuated by 1,25D3 pre-treatment. Our results suggest that 1,25D3 attenuates BPA-induced decreases in 17β-estradiol and that treatment with 1,25D3 plus BPA regulates granulosa cell mitochondria by elevating mitochondrial biogenesis-related protein levels.

Original languageEnglish
Pages (from-to)200-211
Number of pages12
JournalJournal of Steroid Biochemistry and Molecular Biology
Volume185
DOIs
Publication statusPublished - Jan 1 2019

Keywords

  • 1,25-dihydroxyvitamin D
  • 17β-estradiol
  • Bisphenol A
  • Granulosa cells
  • Mitochondrial biogenesis

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Endocrinology
  • Clinical Biochemistry
  • Cell Biology

Fingerprint Dive into the research topics of '1,25-Dihydroxyvitamin D<sub>3</sub> modulates the effects of sublethal BPA on mitochondrial function via activating PI3K-Akt pathway and 17β-estradiol secretion in rat granulosa cells'. Together they form a unique fingerprint.

Cite this