An Integrated Study on Development of High-Performance Semitransparent Perovskite Solar Cells

  • Chang, Chih-Yu (PI)
  • 孟, 心飛 (PI)

Project: A - Government Institutionb - Ministry of Science and Technology

Project Details


The integration of semitransparent solar cell modules into traditional building elements or material as part of the building structure to form building-integrated photovoltaics (BIPV) has been considered as a viable green energy option for the metropolitan area. The unique characteristics of the BIPV are expected to open up new markets particularly for the construction of green building. Among various types of photovoltaic technologies, hybrid lead halide perovskite solar cells have recently attracted massive attention due to their low manufacturing cost, lightweight, and excellent mechanical flexibility. Despite these advantages, further improvements in performance, lifetime, and large-scale manufacturing capability will need to be improved before commercialization. Over the past few years, we have made important breakthroughs in the development of highly-efficient and stable large-area perovskite solar cells. The obtained power conversion efficiencies (PCEs) from our group are among the highest value ever reported for perovskite solar cells under the same conditions. Furthering on our previous work, here we propose several new strategies to achieve high-performance, stable, large-area semitransparent perovskite solar cells based on cost-effective procedures in this project, where the following key technologies will be pursued: (1) materials innovation for developing transparent conductive layer, anti-reflection layer, perovskite active layer, interfacial layer, and encapsulation layer; (2) interfacial modification for improving the contact properties at the interfaces; (3) device engineering for designing novel device architecture and for developing large-scale blade-coating techniques. To examine the feasibility of these techniques, the nanoscale characterization and optical modeling via transfer matrix method will be performed. The structure-properties relationship of the newly-developed materials and their impact on device characteristics will be systematically investigated, and the degradation mechanisms of the devices will also be studied. Upon completion of this project, we will provide fundamental scientific investigations and technological applications of semitransparent perovskite solar cells. The resulting findings will not only open a new avenue for improving the practicality of next-generation solution-processed semitransparent solar cells, but also bring new insights into the development of novel functional materials for device applications.
Effective start/end date8/1/177/31/18


  • Perovskite solar cells
  • Semitransparent
  • Functional materials
  • Interfacial modification
  • Device engineering
  • Power conversion efficiency
  • Stability